Abstract

In many engineering applications, both random and interval variables exist. The mixture of both types of variables has been dealt with in robust design for single-disciplinary systems. This work focuses on robustness assessment for multidisciplinary systems with both random and interval variables. To alleviate the intensive computational demand, a semi-second-order Taylor expansion method is proposed to evaluate robustness. A performance function is approximated with linear terms of random and interval variables, as well as the interaction terms between the two types of variables. Then the maximum and minimum standard deviations of the performance function are computed. With the proposed method, the impact of both random and interval variables on the system robustness can be evaluated efficiently.

1.
Taguchi
,
G.
,
Chowdhury
,
S.
, and
Taguchi
,
S.
, 2000,
Robust Engineering: Learn How to Boost Quality While Reducing Costs & Time to Market
,
McGraw-Hill
,
New York
.
2.
Taguchi
,
G.
, 1993,
Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream
,
ASME
,
New York
.
3.
Das
,
I.
, 2000, “
Robustness Optimization for Constrained Nonlinear Programming Problems
,”
Eng. Optimiz.
0305-215X,
32
(
5
), pp.
585
618
.
4.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
385
394
.
5.
Chen
,
W.
, and
Lewis
,
K.
, 1999, “
A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design
,”
AIAA J.
0001-1452,
37
(
8
), pp.
982
989
.
6.
Huang
,
B.
, and
Du
,
X.
, 2007, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
2
), pp.
123
137
.
7.
Guo
,
J.
, and
Du
,
X.
, 2007, “
Sensitivity Analysis With the Mixture of Epistemic and Aleatory Uncertainties
,”
AIAA J.
0001-1452,
45
(
9
), pp.
2337
2349
.
8.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design Under the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
0161-8458,
127
(
6
), pp.
1068
1076
.
9.
Mourelatos
,
Z.
, and
Zhou
,
J.
, 2005, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
AIAA J.
0001-1452,
43
(
8
), pp.
1696
1705
.
10.
Cafeo
,
J. A.
,
Donndelinger
,
J. A.
,
Lust
,
R. V.
, and
Mourelatos
,
Z. P.
, 2005,
The Need for Nondeterministic Approaches in Automotive Design: A Business Perspective
,
CRC
,
Washington, DC
.
11.
Oberkampf
,
W. L.
, and
Helton
,
J. C.
, 2002, “
Investigation of Evidence Theory for Engineering Applications
,”
Proceedings of the Fourth Non-Deterministic Approaches Forum
, Denver, CO, Apr. 22–25, AIAA Paper No. 2002-1569.
12.
Helton
,
J. C.
,
Johnson
,
J. D.
, and
Oberkampf
,
W. L.
, 2004, “
An Exploration of Alternative Approaches to the Representation of Uncertainty in Model Predictions
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
39
71
.
13.
Li
,
M.
, and
Azarm
,
S.
, 2008, “
Multiobjective Collaborative Robust Optimization (McRO) With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
081402
.
14.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis With the First Order Reliability Method
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091401
.
15.
Du
,
X.
,
Venigella
,
P.
, and
Liu
,
D.
, 2009, “
Robust Mechanism Synthesis With Random and Interval Variables
,”
Mech. Mach. Theory
0094-114X,
44
(
7
), pp.
1321
1337
.
16.
Chen
,
W.
,
Wiecek
,
M.
, and
Zhang
,
J.
, 1999, “
Quality Utility: A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
0161-8458,
121
(
2
), pp.
179
187
.
17.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
0161-8458,
115
(
1
), pp.
74
80
.
18.
Park
,
G. J.
,
Lee
,
T. H.
,
Lee
,
K. H.
, and
Hwang
,
K. H.
, 2006, “
Robust Design: An Overview
,”
AIAA J.
0001-1452,
44
(
1
), pp.
181
191
.
19.
Wu
,
W.
, and
Rao
,
S. S.
, 2007, “
Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
(
1
), pp.
54
64
.
20.
Rao
,
S. S.
, and
Berke
,
L.
, 1997, “
Analysis of Uncertain Structural Systems Using Interval Analysis
,”
AIAA J.
0001-1452,
35
(
4
), pp.
727
735
.
21.
Wu
,
W.
, and
Rao
,
S. S.
, 2004, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
581
592
.
22.
Du
,
X.
, 2008, “
General Robust Design by Semi-Second Order Taylor Expansion
,”
2008 ASME International Mechanical Engineering Congress and Exposition
, Boston, Oct. 31–Nov. 6, Paper No. IMECE2008-66686.
23.
Du
,
X.
, and
Chen
,
W.
, 2002, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
0001-1452,
40
(
3
), pp.
545
552
.
24.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
832
843
.
25.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
, 2002, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,” Paper No. NASA/TM-2002-211462.
26.
Du
,
X.
, and
Chen
,
W.
, 2000, “
An Integrated Methodology for Uncertainty Propagation and Management in Simulation-Based Systems Design
,”
AIAA J.
0001-1452,
38
(
8
), pp.
1471
1478
.
27.
Batill
,
S. M.
,
Reanud
,
J. E.
, and
Gu
,
X.
, 2000, “
Modeling and Simulation Uncertainty in Multidisciplinary Design Optimization
,”
AIAA Multidisciplinary Analysis and Optimization Conference and Exhibit
, Long Beach, CA, Sept., AIAA Paper No. 2000-4803.
28.
McAllister
,
C. D.
, and
Simpson
,
T. W.
, 2003, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
0161-8458,
125
(
1
), pp.
124
130
.
29.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
, 2008, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidiscip. Optim.
1615-147X,
35
(
2
), pp.
117
130
.
30.
Yin
,
X.
, and
Chen
,
W.
, 2008, “
A Hierarchical Statistical Sensitivity Analysis Method for Complex Engineering Systems Design
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
071402
.
31.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2007, “
Decoupled Approach to Multidisciplinary Design Optimization Under Uncertainty
,”
Optim. Eng.
1389-4420,
8
(
1
), pp.
21
42
.
32.
Giassi
,
A.
,
Bennis
,
F.
, and
Maisonneuve
,
J. J.
, 2004, “
Multidisciplinary Design Optimisation and Robust Design Approaches Applied to Concurrent Design
,”
Struct. Multidiscip. Optim.
1615-147X,
28
(
5
), pp.
356
371
.
33.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A. S.
, 2000, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
3
), pp.
190
213
.
34.
Gu
,
X.
,
Renaud
,
J. E.
, and
Penninger
,
C. L.
, 2006, “
Implicit Uncertainty Propagation for Robust Collaborative Optimization
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
1001
1013
.
35.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
281
294
.
36.
Du
,
X.
, and
Chen
,
W.
, 2005, “
Collaborative Reliability Analysis Under the Framework of Multidisciplinary Systems Design
,”
Optim. Eng.
1389-4420,
6
(
1
), pp.
63
84
.
37.
Guo
,
J.
, and
Du
,
X.
, 2008, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, 16th AIAA/ASME/AHS Adaptive Structures.
38.
Melchers
,
R. E.
, 1999,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
, pp.
94
112
.
39.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Kim
,
H.
, 2006, “
Probabilistic Analytical Target Cascading-Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
991
1000
.
40.
D’Acunto
,
B.
, 2004,
Computational Methods for PDE in Mechanics
,
World Scientific
,
Singapore
, pp.
2
7
.
You do not currently have access to this content.