This paper reports a new method for 3D shape classification. Given a 3D shape M, we first define a spectral function at every point on M that is a weighted summation of the geodesics from the point to a set of curvature-sensitive feature points on M. Based on this spectral field, a real-valued square matrix is defined that correlates the topology (the spectral field) with the geometry (the maximum geodesic) of M, and the eigenvalues of this matrix are then taken as the fingerprint of M. This fingerprint enjoys several favorable characteristics desired for 3D shape classification, such as high sensitivity to intrinsic features on M (because of the feature points and the correlation) and good immunity to geometric noise on M (because of the novel design of the weights and the overall integration of geodesics). As an integral part of the work, we finally apply the classical multidimensional scaling method to the fingerprints of the 3D shapes to be classified. In all, our classification algorithm maps 3D shapes into clusters in a Euclidean plane that possess high fidelity to intrinsic features—in both geometry and topology—of the original shapes. We demonstrate the versatility of our approach through various classification examples.

1.
Hilaga
,
M.
,
Shinagawa
,
Y.
,
Kohmura
,
T.
, and
Kunii
,
T.
, 2001,
Topology Matching for Fully Automatic Similarity Estimate of 3D Shapes
, SIGGRAPH,
ACM Press
,
Los Angeles, CA
, pp.
203
212
.
2.
Funkhouser
,
T.
,
Min
,
P.
,
Kazhdan
,
M.
,
Chen
,
J.
,
Halderman
,
A.
,
Dobkin
,
A.
, and
Jacobs
,
D.
, 2003, “
A Search Engine for 3D Models
,”
ACM Trans. Graphics
0730-0301,
22
(
1
), pp.
83
105
.
3.
Iyer
,
N.
,
Jayanti
,
S.
,
Lou
,
K.
,
Kalyanaraman
,
Y.
, and
Ramani
,
K.
, 2005, “
Three-Dimensional Shape Searching: State-of-the-Art Review and Future Trends
,”
Comput.-Aided Des.
0010-4485,
37
(
5
), pp.
509
530
.
4.
Sundar
,
H.
,
Silver
,
D.
,
Gagvani
,
N.
, and
Dickinson
,
S.
, 2003, “
Skeleton Based Shape Matching and Retrieval
,”
Proceedings of the Shape Modeling and Applications
,
Seoul, Korea
.
5.
Sebastian
,
T.
,
Klein
,
P.
, and
Kimia
,
B.
, 2001, “
Recognition of Shapes by Editing Shock Graphs
,”
IEEE International Conference on Computer Vision
, pp.
755
762
.
6.
Shapiro
,
L. G.
, and
Haralick
,
R. M.
, 1981, “
Structural Descriptions and Inexact Matching
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
PAMI-3
, pp.
504
519
.
7.
Shokoufandeh
,
A.
,
Dickinson
,
S.
,
Jönsson
,
C.
,
Bretzner
,
L.
, and
Lindeberg
,
T.
, 2002, “
On the Representation and Matching of Qualitative Shape at Multiple Scales
,”
Proceedings of the Seventh European Conference on Computer Vision
, Vol.
3
, pp.
759
775
.
8.
Siddiqi
,
K.
,
Shokoufandeh
,
A.
,
Dickinson
,
S.
, and
Zucker
,
S.
, 1999, “
Shock Graphs and Shape Matching
,”
Int. J. Comput. Vis.
0920-5691,
30
, pp.
1
24
.
9.
Au
,
O. K.-C.
,
Tai
,
C. -L.
,
Chu
,
H. -K.
,
Cohen
,
D.
, and
Lee
,
T. -Y.
, 2008, “
Skeleton Extraction by Mesh Contraction
,”
ACM Transaction on Graphics, Proceedings of the SIGGRAPH 2008
.
10.
Sharf
,
A.
, 2007, “
On-the-Fly Curve-Skeleton Computation for 3D Shapes
,” EUROGRAPHICS 2007, Vol. 26, No. 3.
11.
Styner
,
M.
, 2003, “
Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability
,”
Int. J. Comput. Vis.
0920-5691,
55
(
2/3
), pp.
107
122
.
12.
Yamauchi
,
H.
,
Gumbold
,
S.
,
Zayer
,
R.
, and
Seidel
,
H. -P.
, 2005, “
Mesh Segmentation Driven by Gaussian Curvature
,”
Visual Comput.
0178-2789,
21
, pp.
659
668
.
13.
Osada
,
R.
,
Funkhouser
,
T.
,
Chazelle
,
B.
, and
Dobkin
,
D.
, 2001, “
Matching 3D Models With Shape Distribution
,”
International Conference on Shape Modeling and Applications
,
IEEE Computer Society
,
Genoa, Italy
, pp.
154
166
.
14.
Cardone
,
A.
, and
Gupta
,
S. K.
, 2006, “
Similarity Assessment Based on Face Alignment Using Attributed Vectors
,”
Computer Aided Design and Application
,
5
(
5
), pp.
645
654
.
15.
EI-Mehalawi
,
M.
, and
Miller
,
R.
, 2003, “
A Database System of Mechanical Components Based on Geometric and Topological Similarity. Part I: Representation
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
83
94
.
16.
EI-Mehalawi
,
M.
, and
Miller
,
R.
, 2003, “
A Database System of Mechanical Components Based on Geometric and Topological Similarity. Part II: Indexing, Retrieval, Matching, and Similarity Assessment
,”
Comput.-Aided Des.
0010-4485,
35
, pp.
95
105
.
17.
Gao
,
S.
, and
Shah
,
J.
, 1998, “
Automatic Recognition of Interacting Machining Features Based on Minimal Condition Subgraph
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
727
739
.
18.
McWherter
,
D.
,
Peabody
,
M.
,
Regli
,
W. C.
, and
Shoukofandeh
,
A.
, 2001, “
Solid Model Database: Techniques and Empirical Results
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
4
), pp.
300
310
.
19.
Tang
,
K.
, and
Woo
,
T.
, 1991, “
Algorithmic Aspects of Alternating Sum of Volumes. Part 1: Data Structure and Difference Operation
,”
Comput.-Aided Des.
0010-4485,
23
(
5
), pp.
357
366
.
20.
Tang
,
K.
, and
Woo
,
T.
, 1991, “
Algorithmic Aspects of Alternating Sum of Volumes. Part 2: Nonconvergence and Its Remedy
,”
Comput.-Aided Des.
0010-4485,
23
(
6
), pp.
435
443
.
21.
Tenenbaum
,
J.
,
Silva
,
V.
, and
Lanford
,
J.
, 2000, “
A Global Geometric Framework for Nonlinear Dimensionality Reduction
,”
Science
0036-8075,
290
, pp.
2319
2323
.
22.
Elad
,
A.
, and
Kimmel
,
R.
, 2003, “
On Bending Invariant Signatures for Surfaces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
25
, pp.
1285
1295
.
23.
Reuter
,
M.
,
Wolter
,
F. -E.
, and
Peinecke
,
N.
, 2005, “
Laplace-Spectra as Fingerprints for Shape Matching
,”
ACM Symposium on Solid and Physical Modeling
, pp.
101
106
.
24.
Belkin
,
M.
, and
Niyogi
,
P.
, 2003, “
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
,”
Neural Comput.
0899-7667,
15
, pp.
1373
1396
.
25.
Belkin
,
M.
, and
Niyogi
,
P.
, 2006, “
Manifold Regularization: A Geometric Framework for Learning From Labeled and Unlabeled Examples
,”
J. Mach. Learn. Res.
1532-4435,
7
(
Nov
), pp.
2399
2434
.
26.
Belkin
,
M.
, and
Niyogi
,
P.
, 2004, “
Semi-Supervised Learning on Riemannian Manifolds
,”
Mach. Learn.
0885-6125,
56
, pp.
209
239
.
27.
Shi
,
M.
,
Lai
,
Y.
, and
Krishna
,
S.
, 2008, “
Anisotropic Laplace-Beltrami Eigenmaps: Bridging Reeb Graphs and Skeletons
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2008
.
28.
Ohbuchi
,
R.
, and
Kobayashi
,
J.
, 2006, “
Unsupervised Learning From a Corpus for Shape-Based 3D Model Retrieval
,”
International Multimedia Conference
,
ACM Press
, pp.
163
172
.
29.
Mitchell
,
J. B.
,
Mount
,
D.
, and
Papadimitriou
,
C.
, 1987, “
The Discrete Geodesic Problem
,”
SIAM J. Comput.
0097-5397,
16
(
4
), pp.
647
668
.
30.
Surazhsky
,
V.
,
Surazhsky
,
T.
,
Kirsanov
,
D.
,
Gortler
,
S.
, and
Hoppe
,
H.
, 2005,
Fast Exact and Approximate Geodesics on Meshes
, SIGGRAPH, ACM Press,
Los Angeles, CA
, pp.
553
560
.
31.
Liu
,
Y. -J.
,
Zhou
,
Q. -Y.
, and
Hu
,
S. -M.
, 2007, “
Handling Degenerate Cases in Exact Geodesic Computation on Triangle Meshes
,”
Visual Comput.
0178-2789,
23
(
9–11
), pp.
661
668
.
32.
Borg
,
I.
, and
Groenen
,
P.
, 1997,
Modern Multidimensional Scaling—Theory and Applications
,
Springer
,
New York
.
33.
Cox
,
M. A. A.
, and
Cox
,
T. F.
, 1994,
Multidimensional Scaling
,
Chapman and Hall
,
London
.
34.
Kruskal
,
J. B.
, and
Wish
,
M.
, 1978,
Multidimensional Scaling
,
Sage
.
35.
Zigelman
,
G.
,
Kimmel
,
R.
, and
Kiryati
,
N.
, 2002, “
Texture Mapping Using Surface Flattening via MDS
,”
IEEE Trans. on Visualization and Computer Graphics
1077-2626,
8
(
2
), pp.
198
207
.
You do not currently have access to this content.