Abstract

The method of kinematic synthesis requires finding the solution set of a system of polynomials. Parameter homotopy continuation is used to solve these systems and requires repeatedly solving systems of linear equations. For kinematic synthesis, the associated linear systems become ill-conditioned, resulting in a marked decrease in the number of solutions found due to path tracking failures. This unavoidable ill-conditioning places a premium on accurate function and matrix evaluations. Traditionally, variables are eliminated to reduce the dimension of the problem. However, this greatly increases the computational cost of evaluating the resulting functions and matrices and introduces numerical instability. We propose avoiding the elimination of variables to reduce required computations, increasing the dimension of the linear systems, but resulting in matrices that are quite sparse. We then solve these systems with sparse solvers to save memory and increase speed. We found that this combination resulted in a speedup of up to 250 × over traditional methods while maintaining the same accuracy.

References

1.
Lipson
,
J. D.
,
1976
, “
Newtons Method
,”
Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation—SYMSAC 76
,
Yorktown Heights, NY
,
Aug. 10–12
,
ACM Press
.
2.
Kolev
,
L.
,
2000
, “
An Interval Method for Global Nonlinear Analysis
,”
IEEE Trans. Circ. Syst. I Fundam. Theory Appl.
,
47
(
5
), pp.
675
683
.
3.
Boege
,
W.
,
Gebauer
,
R.
, and
Kredel
,
H.
,
1986
, “
Some Examples for Solving Systems of Algebraic Equations by Calculating Groebner Bases
,”
J. Symbol. Comput.
,
2
(
1
), pp.
83
98
.
4.
Freudenstein
,
F.
, and
Roth
,
B.
,
1963
, “
Numerical Solution of Systems of Nonlinear Equations
,”
J. ACM
,
10
(
4
), pp.
550
556
.
5.
Plecnik
,
M. M.
,
2015
, “
The Kinematic Design of Six-Bar Linkages Using Polynomial Homotopy Continuation
,” Ph.D. thesis, Department of Mechanical and Aerospace Engineering,
University of California
,
Irvine, CA
.
6.
Morgan
,
A.
, and
Sommese
,
A.
,
1987
, “
A Homotopy for Solving General Polynomial Systems That Respects M-Homogeneous Structures
,”
Appl. Math. Comput.
,
24
(
2
), pp.
101
113
.
7.
Huber
,
B.
, and
Sturmfels
,
B.
,
1995
, “
A Polyhedral Method for Solving Sparse Polynomial Systems
,”
Math. Comput.
,
64
(
212
), pp.
1541
1541
.
8.
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2010
, “
Regeneration Homotopies for Solving Systems of Polynomials
,”
Math. Comput.
,
80
(
273
), pp.
345
377
.
9.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2017
, “
Finding Only Finite Roots to Large Kinematic Synthesis Systems
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021005
.
10.
Baskar
,
A.
, and
Plecnik
,
M.
,
2020
, “
Synthesis of Six-Bar Timed Curve Generators of Stephenson-Type Using Random Monodromy Loops
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011005
.
11.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient-Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
(
2
), pp.
123
160
.
12.
Bates
,
D. J.
,
Sommese
,
A. J.
,
Hauenstein
,
J. D.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems With Bertini
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
13.
Higham
,
N. J.
,
2002
,
Accuracy and Stability of Numerical Algorithms
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
14.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
J. Mech. Des.
,
114
(
1
), pp.
153
159
.
15.
Schreiber
,
H.
,
Meer
,
K.
, and
Schmitt
,
B.
,
2002
, “
Dimensional Synthesis of Planar Stephenson Mechanisms for Motion Generation Using Circlepoint Search and Homotopy Methods
,”
Mech. Mach. Theory
,
37
(
7
), pp.
717
737
.
16.
Morgan
,
A. P.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
1990
, “
Computing Singular Solutions to Nonlinear Analytic Systems
,”
Numer. Math.
,
58
(
1
), pp.
669
684
.
17.
Watson
,
L. T.
,
Sosonkina
,
M.
,
Melville
,
R. C.
,
Morgan
,
A. P.
, and
Walker
,
H. F.
,
1997
, “
Algorithm 777: HOMPACK90
,”
ACM Trans. Math. Softw.
,
23
(
4
), pp.
514
549
.
18.
Verschelde
,
J.
,
1999
, “
Algorithm 795
,”
ACM Trans. Math. Softw.
,
25
(
2
), pp.
251
276
.
19.
Wise
,
S. M.
,
Sommese
,
A. J.
, and
Watson
,
L. T.
,
2000
, “
Algorithm 801: POLSYS_PLP
,”
ACM Trans. Math. Softw.
,
26
(
1
), pp.
176
200
.
20.
Su
,
H.-J.
,
McCarthy
,
J. M.
,
Sosonkina
,
M.
, and
Watson
,
L. T.
,
2006
, “
Algorithm 857
,”
ACM Trans. Math. Softw.
,
32
(
4
), pp.
561
579
.
21.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
,
World Scientific
,
Singapore
.
22.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2007
, “
Bertini: Software for Numerical Algebraic Geometry
,”
bertini.nd.edu.
23.
Newkirk
,
J. T.
,
Watson
,
L. T.
, and
Stanišić
,
M. M.
,
2010
, “
Determining the Number of Inverse Kinematic Solutions of a Constrained Parallel Mechanism Using a Homotopy Algorithm
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
024502
.
24.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2020
, “
Designing Dynamic Machines With Large-Scale Root Finding
,”
IEEE Trans. Robot.
,
36
(
4
), pp.
1135
1152
.
25.
Baskar
,
A.
, and
Plecnik
,
M.
,
2021
, “
Synthesis of Watt-Type Timed Curve Generators and Selection From Continuous Cognate Spaces
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
051003
.
26.
Fehlberg
,
E.
,
1968
, “
Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge–Kutta Formulas With Stepsize Control
,”
NASA Technical Report R-287
.
27.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
28.
IEEE Std 754-2019
,
2019
, “
IEEE Standard for Floating-Point Arithmetic
” (
Revision of IEEE 754-2008
), pp.
1
84
.
29.
Bailey
,
D.
,
2005
, “
High-Precision Floating-Point Arithmetic in Scientific Computation
,”
Comput. Sci. Eng.
,
7
(
3
), pp.
54
61
.
30.
Wampler
,
C. W.
,
1996
, “
Isotropic Coordinates, Circularity, and Bezout Numbers: Planar Kinematics From a New Perspective
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Irvine, CA
,
Aug. 18–22
.
31.
Davis
,
T. A.
,
Rajamanickam
,
S.
, and
Sid-Lakhdar
,
W. M.
,
2016
, “
A Survey of Direct Methods for Sparse Linear Systems
,”
Acta Numer.
,
25
, pp.
383
566
.
32.
Tewarson
,
R. P.
,
1970
, “
Computations With Sparse Matrices
,”
SIAM Rev.
,
12
(
4
), pp.
527
543
.
33.
Rose
,
D. J.
, and
Tarjan
,
R. E.
,
1978
, “
Algorithmic Aspects of Vertex Elimination on Directed Graphs
,”
SIAM J. Appl. Math.
,
34
(
1
), pp.
176
197
.
34.
Gilbert
,
J. R.
,
1980
, “
A Note on the NP-Completeness of Vertex Elimination on Directed Graphs
,”
SIAM J. Algebraic Discret. Methods
,
1
(
3
), pp.
292
294
.
35.
Cuthill
,
E.
, and
McKee
,
J.
,
1969
, “
Reducing the Bandwidth of Sparse Symmetric Matrices
,”
Proceedings of the 1969 24th National Conference
,
New York, NY
,
Aug. 26–28
,
ACM Press
.
36.
Markowitz
,
H. M.
,
1957
, “
The Elimination Form of the Inverse and Its Application to Linear Programming
,”
Manage. Sci.
,
3
(
3
), pp.
255
269
.
37.
George
,
A.
, and
McIntyre
,
D. R.
,
1978
, “
On the Application of the Minimum Degree Algorithm to Finite Element Systems
,”
SIAM J. Numer. Anal.
,
15
(
1
), pp.
90
112
.
38.
Berry
,
R.
,
1971
, “
An Optimal Ordering of Electronic Circuit Equations for a Sparse Matrix Solution
,”
IEEE Trans. Circuit Theory
,
18
(
1
), pp.
40
50
.
39.
Kernighan
,
B. W.
, and
Lin
,
S.
,
1970
, “
An Efficient Heuristic Procedure for Partitioning Graphs
,”
Bell Syst. Tech. J.
,
49
(
2
), pp.
291
307
.
40.
Demmel
,
J. W.
,
Eisenstat
,
S. C.
,
Gilbert
,
J. R.
,
Li
,
X. S.
, and
Liu
,
J. W. H.
,
1999
, “
A Supernodal Approach to Sparse Partial Pivoting
,”
SIAM J. Matrix Anal. Appl.
,
20
(
3
), pp.
720
755
.
41.
Irons
,
B. M.
,
1970
, “
A Frontal Solution Program for Finite Element Analysis
,”
Int. J. Numer. Methods Eng.
,
2
(
1
), pp.
5
32
.
42.
Duff
,
I. S.
, and
Reid
,
J. K.
,
1983
, “
The Multifrontal Solution of Indefinite Sparse Symmetric Linear
,”
ACM Trans. Math. Softw.
,
9
(
3
), pp.
302
325
.
43.
Guennebaud
,
G.
, and
Jacob
,
B.
,
2010
, “
Eigen v3
,” http://eigen.tuxfamily.org
44.
Demmel
,
J. W.
,
Eisenstat
,
S. C.
,
Gilbert
,
J. R.
,
Li
,
X. S.
, and
Liu
,
J. W. H.
,
1999
, “
A Supernodal Approach to Sparse Partial Pivoting
,”
SIAM J. Matrix Anal. Appl.
,
20
(
3
), pp.
720
755
.
45.
Plecnik
,
M. M.
, and
Fearing
,
R. S.
,
2017
, “
A Study on Finding Finite Roots for Kinematic Synthesis
,”
Volume 5B: 41st Mechanisms and Robotics Conference
,
Cleveland, OH
,
Aug. 6–9
,
American Society of Mechanical Engineers
.
You do not currently have access to this content.