Abstract

We propose a nested weighted Tchebycheff Multi-objective Bayesian optimization (WTB MOBO) framework where we built a regression model selection procedure from the ensemble of models, toward better estimation of the uncertain parameters (utopia) of the weighted Tchebycheff expensive black-box multi-objective function. In our previous work, a weighted Tchebycheff MOBO approach has been demonstrated which attempts to estimate the model parameters (utopia) in formulating the acquisition function of the weighted Tchebycheff multi-objective black-box functions, through calibration using an a priori selected regression model. However, the existing MOBO model lacks flexibility in selecting the appropriate regression models given the guided sampled data and, therefore, can under-fit or over-fit as the iterations of the MOBO progress. This ultimately can reduce the overall MOBO performance. As, in general, it is too complex to a priori guarantee a best model, this motivates us to consider a portfolio of different families (simple-to-complex) of predictive models that have been fitted with current training data guided by the WTB MOBO, and the best model is selected following a user-defined prediction root-mean-square error-based approach. The proposed approach is implemented in optimizing a thin tube design under constant loading of temperature and pressure, minimizing the risk of creep-fatigue failure and design cost. Finally, the nested WTB MOBO model performance is compared with different MOBO frameworks with respect to accuracy in parameter estimation, Pareto-optimal solutions, and function evaluation cost. This approach is generalized enough to consider different families of predictive models in the portfolio for best model selection, where the overall design architecture allows for solving any high-dimensional (multiple functions) complex black-box problems and can be extended to any other global criterion multi-objective optimization methods where prior knowledge of utopia is required.

References

1.
Sarkar
,
S.
,
Mondal
,
S.
,
Joly
,
M.
,
Lynch
,
M. E.
,
Bopardikar
,
S. D.
,
Acharya
,
R.
, and
Perdikaris
,
P.
,
2019
, “
Multifidelity and Multiscale Bayesian Framework for High-Dimensional Engineering Design and Calibration
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121001
.
2.
Sexton
,
T.
, and
Ren
,
M. Y.
,
2017
, “
Learning an Optimization Algorithm Through Human Design Iterations
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101404
.
3.
Shu
,
L.
,
Jiang
,
P.
,
Shao
,
X.
, and
Wang
,
Y.
,
2020
, “
A New Multi-objective Bayesian Optimization Formulation With the Acquisition Function for Convergence and Diversity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091703
.
4.
Biswas
,
A.
,
Fuentes
,
C.
, and
Hoyle
,
C.
,
2020
, “
An Approach to Bayesian Optimization in Optimizing Weighted Tchebycheff Multi-objective Black-Box Functions
,”
Proceedings of the International Mechanical Engineering Congress and Exposition IMECE2020
,
Virtual
,
Nov. 16–19
, pp. V006T06A030–V006T06A043.
5.
Biswas
,
A.
,
Fuentes
,
C.
, and
Hoyle
,
C.
,
2022
, “
A Multi-Objective Bayesian Optimization Approach Using the Weighted Tchebycheff Method
,”
ASME J. Mech. Des.
,
144
(
1
) p.
011703
.
6.
Al-Dujaili
,
A.
, and
Suresh
,
S.
,
2019
, “
Revisiting Norm Optimization for Multi-objective Black-Box Problems: A Finite-Time Analysis
,”
J. Global Optim.
,
73
(
3
), pp.
659
673
.
7.
Važan
,
P.
,
Červeňanská
,
Z.
,
Kotianová
,
J.
, and
Holík
,
J.
,
2019
, “
Problems of a Utopia Point Setting in Transformation of Individual Objective Functions in Multi-objective Optimization
,”
Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol.
,
27
(
45
), pp.
64
71
.
8.
Brochu
,
E.
,
Cora
,
V. M.
, and
de Freitas
,
N.
,
2020
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning
,” arxiv10122599 Cs, 2010, Accessed January 4, 2020, http://arxiv.org/abs/1012.2599
9.
Lizotte
,
D.
,
Wang
,
T.
,
Bowling
,
M.
, and
Schuurmans
,
D.
,
2007
, “
Automatic Gait Optimization With Gaussian Process Regression
,” pp.
944
949
.
10.
Lizotte
,
D.
,
2008
, “
Practical Bayesian Optimization
,” PhD thesis,
University of Alberta
,
Edmonton, Alberta, Canada
.
11.
Cora
,
V. M.
,
2008
,
Model-Based Active Learning in Hierarchical Policies
,
Master's thesis, University of British Columbia
,
Vancouver, Canada
.
12.
Frean
,
M.
, and
Boyle
,
P.
,
2008
, “Using Gaussian Processes to Optimize Expensive Functions,”
AI 2008: Advances in Artificial Intelligence
,
W.
Wobcke
and
M.
Zhang
, eds., Lecture Notes in Computer Science, vol. 5360,
Springer
,
Berlin/Heidelberg
, pp.
258
267
.
13.
Martinez-Cantin
,
R.
,
de Freitas
,
N.
,
Brochu
,
E.
,
Castellanos
,
J.
, and
Doucet
,
A.
,
2009
, “
A Bayesian Exploration-Exploitation Approach for Optimal Online Sensing and Planning With a Visually Guided Mobile Robot
,”
Auton. Robots
,
27
(
2
), pp.
93
103
.
14.
Xing
,
W.
,
Elhabian
,
S. Y.
,
Keshavarzzadeh
,
V.
, and
Kirby
,
R. M.
,
2020
, “
Shared-Gaussian Process: Learning Interpretable Shared Hidden Structure Across Data Spaces for Design Space Analysis and Exploration
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081707
.
15.
Bostanabad
,
R.
,
Chan
,
Y.-C.
,
Wang
,
L.
,
Zhu
,
P.
, and
Chen
,
W.
,
2019
, “
Globally Approximate Gaussian Processes for Big Data With Application to Data-Driven Metamaterials Design
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111402
.
16.
Erickson
,
C. B.
,
Ankenman
,
B. E.
, and
Sanchez
,
S. M.
,
2018
, “
Comparison of Gaussian Process Modeling Software
,”
Eur. J. Oper. Res.
,
266
(
1
), pp.
179
192
.
17.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
97
106
.
18.
Cox
,
D. D.
, and
John
,
S.
,
1992
, “
A Statistical Method for Global Optimization
,”
Proceedings of 1992 IEEE International Conference on Systems, Man, and Cybernetics
,
Chicago, IL
,
Oct. 18–21
,
vol. 2
, pp.
1241
1246
.
19.
Emmerich
,
M. T. M.
,
Giannakoglou
,
K. C.
, and
Naujoks
,
B.
,
2006
, “
Single- and Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels
,”
IEEE Trans. Evol. Comput.
,
10
(
4
), pp.
421
439
.
20.
Abdolshah
,
M.
,
Shilton
,
A.
,
Rana
,
S.
,
Gupta
,
S.
, and
Venkatesh
,
S.
,
2018
, “
Expected Hypervolume Improvement with Constraints
,”
Proceedings of the 24th International Conference on Pattern Recognition (ICPR)
,
Beijing, China
,
Aug. 20–24
, pp.
3238
3243
.
21.
Yang
,
K.
,
Emmerich
,
M.
,
Deutz
,
A.
, and
Bäck
,
T.
,
2019
, “
Multi-objective Bayesian Global Optimization Using Expected Hypervolume Improvement Gradient
,”
Swarm Evol. Comput.
,
44
, pp.
945
956
.
22.
Wang
,
Z.
, and
Jegelka
,
S.
2018
Max-value Entropy Search for Efficient Bayesian Optimization
,” ArXiv170301968 Cs Math Stat, Accessed April 28, 2020. http://arxiv.org/abs/1703.01968
23.
Hernández-Lobato
,
D.
,
Hernández-Lobato
,
J. M.
,
Shah
,
A.
, and
Adams
,
R. P.
2016
Predictive Entropy Search for Multi-objective Bayesian Optimization
,” ArXiv151105467 Stat, Accessed April 28, 2020. [Online]. Available: http://arxiv.org/abs/1511.05467
24.
Abdolshah
,
M.
,
Shilton
,
A.
,
Rana
,
S.
,
Gupta
,
S.
, and
Venkatesh
,
S.
2019
Multi-objective Bayesian Optimisation With Preferences Over Objectives
,” ArXiv190204228 Cs Stat, Accessed April 28, 2020. http://arxiv.org/abs/1902.04228
25.
Bhaskar
,
V.
,
Gupta
,
S. K.
, and
Ray
,
A. K.
,
2000
, “
Applications of Multiobjective Optimization in Chemical Engineering
,”
Rev. Chem. Eng.
,
16
(
1
), pp.
1
54
.
26.
Olson
,
D. L.
,
1993
, “
Tchebycheff Norms in Multi-objective Linear Programming
,”
Math. Comput. Modell.
,
17
(
1
), pp.
113
124
.
27.
Bowman
,
V. J.
,
1976
, “On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives,”
Multiple Criteria Decision Making
,
Springer
,
Berlin/Heidelberg
, pp.
76
86
.
28.
Mandal
,
W. A.
,
2021
, “
Weighted Tchebycheff Optimization Technique Under Uncertainty
,”
Ann. Data Sci.
,
8
, pp.
709
731
.
29.
Grandinetti
,
L.
,
Guerriero
,
F.
,
Laganà
,
D.
, and
Pisacane
,
O.
,
2010
, “An Approximate ε-Constraint Method for the Multi-Objective Undirected Capacitated Arc Routing Problem,”
Experimental Algorithms
,
P.
Festa
ed., SEA 2010. Lecture Notes in Computer Science, vol. 6049,
Springer
,
Berlin/Heidelberg
, pp.
214
225
.
30.
Rentmeesters
,
M. J.
,
Tsai
,
W. K.
, and
Lin
,
K.-J.
,
1996
, “
A Theory of Lexicographic Multi-criteria Optimization
,”
Proceedings of ICECCS ‘96: 2nd IEEE International Conference on Engineering of Complex Computer Systems (Held Jointly With 6th CSESAW and 4th IEEE RTAW)
,
Montreal, Canada
,
Oct. 21–25
, pp.
76
79
.
31.
Zhang
,
W.
, and
Fujimura
,
S.
,
2010
, “
Improved Vector Evaluated Genetic Algorithm with Archive for Solving Multiobjective PPS Problem
,”
2010 International Conference on E-Product E-Service and E-Entertainment
,
Henan, China
,
Nov. 7–9
, pp.
1
4
.
32.
Improved Rank-Niche Evolution Strategy Algorithm for Constrained Multiobjective Optimization | Emerald Insight
.” https://www.emerald.com/insight/content/doi/10.1108/02644400810874949/full/html. Accessed April 28, 2020.
33.
Coello Coello
,
C. A.
, and
Lechuga
,
M. S.
,
2002
, “
MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization
,”
Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600)
,
vol. 2
, pp.
1051
1056
.
34.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
35.
Cui
,
Y.
,
Geng
,
Z.
,
Zhu
,
Q.
, and
Han
,
Y.
,
2017
, “
Review: Multi-Objective Optimization Methods and Application in Energy Saving
,”
Energy
,
125
, pp.
681
704
.
36.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
37.
Pohlheim
,
H.
,
2006
, “
Examples of Objective Functions (GEATbx.com)
.”
38.
Biswas
,
A.
, and
Hoyle
,
C.
,
2021
, “
An Approach to Bayesian Optimization for Design Feasibility Check on Discontinuous Black-Box Functions
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031716
.
39.
Seidou
,
O.
,
Asselin
,
J. J.
, and
Ouarda
,
T. B. M. J.
,
2007
, “
Bayesian Multivariate Linear Regression With Application to Change Point Models in Hydrometeorological Variables
,”
Water Resour. Res.
,
43
(
8
).
40.
Chen
,
T.
, and
Martin
,
E.
,
2009
, “
Bayesian Linear Regression and Variable Selection for Spectroscopic Calibration
,”
Anal. Chim. Acta
,
631
(
1
), pp.
13
21
.
41.
Yang
,
H.
,
Chan
,
L.
, and
King
,
I.
,
2002
, “
Support Vector Machine Regression for Volatile Stock Market Prediction
,”
Intelligent Data Engineering and Automated Learning—IDEAL 2002
,
Berlin, Heidelberg
, pp.
391
396
.
42.
Patil
,
M. A.
,
Tagade
,
P.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Yeo
,
T.
, and
Doo
,
S.
,
2015
, “
A Novel Multistage Support Vector Machine Based Approach for Li Ion Battery Remaining Useful Life Estimation
,”
Appl. Energy
,
159
, pp.
285
297
.
43.
Snelson
,
E.
Flexible and Efficient Gaussian Process Models for Machine Learning
,”
2007
. https://discovery.ucl.ac.uk/id/eprint/1445855/. Accessed November 3, 2020.
44.
Seeger
,
M.
,
2004
, “
Gaussian Processes for Machine Learning
,”
Int. J. Neural Syst.
45.
Nielsen
,
H. B.
,
Lophaven
,
S. N.
, and
Søndergaard
,
J.
DACE—A Matlab Kriging Toolbox
,”
2002
. http://www2.imm.dtu.dk/pubdb/pubs/1460-full.html. Accessed November 3, 2020.
You do not currently have access to this content.