Abstract

Given a part design, the task of manufacturing process classification identifies an appropriate manufacturing process to fabricate it. Our previous research proposed a large dataset for manufacturing process classification and achieved accurate classification results based on a combination of a convolutional neural network (CNN) and the heat kernel signature for triangle meshes. In this paper, we constructed a classification method based on rotation invariant shape descriptors and a neural network, and it achieved better accuracy than all previous methods. This method uses a point cloud part representation, in contrast to the triangle mesh representation used in our previous work. The first step extracted rotation invariant features consisting of a set of distances between points in the point cloud. Then, the extracted shape descriptors were fed into a CNN for the classification of manufacturing processes. In addition, we provide two visualization methods for interpreting the intermediate layers of the neural network. Last, the performance of the method was tested on some ambiguous examples and their performances were consistent with expectations. In this paper, we have considered only shape information, while non-shape information like materials and tolerances were ignored. Additionally, only parts that require one manufacturing process were considered in this research. Our work demonstrates that part shape attributes alone are adequate for discriminating between different manufacturing processes considered.

References

1.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput.-Aided Des.
,
59
, pp.
1
14
.
2.
Hoefer
,
M. J.
, and
Frank
,
M. C.
,
2018
, “
Automated Manufacturing Process Selection During Conceptual Design
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031701
.
3.
Feng
,
S. C.
, and
Song
,
E. Y.
,
2003
, “
A Manufacturing Process Information Model for Design and Process Planning Integration
,”
J. Manuf. Syst.
,
22
(
1
), pp.
1
15
.
4.
Zhao
,
C.
,
Dinar
,
M.
, and
Melkote
,
S. N.
,
2020
, “
Automated Classification of Manufacturing Process Capability Utilizing Part Shape, Material, and Quality Attributes
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021011
.
5.
Wang
,
Z.
, and
Rosen
,
D.
,
2022
, “
Manufacturing Process Classification Based on Heat Kernel Signature and Convolutional Neural Networks
,”
J. Intell. Manuf.
, pp.
1
23
.
6.
Avetisyan
,
A.
,
Dai
,
A.
, and
Niessner
,
M.
,
2019
, “
End-to-End CAD Model Retrieval and 9DoF Alignment in 3D Scans
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
2551
2560
.
7.
Yeo
,
C.
,
Kim
,
B. C.
,
Cheon
,
S.
,
Lee
,
J.
, and
Mun
,
D.
,
2021
, “
Machining Feature Recognition Based on Deep Neural Networks to Support Tight Integration With 3D CAD Systems
,”
Sci. Rep.
,
11
(
1
), p.
22147
.
8.
Jayaraman
,
P. K.
,
Sanghi
,
A.
,
Lambourne
,
J. G.
,
Willis
,
K. D. D.
,
Davies
,
T.
,
Shayani
,
H.
, and
Morris
,
N.
,
2021
, “
UV-Net: Learning From Boundary Representations
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Nashville, TN
,
June 19–25
, 25thpp.
11703
11712
.
9.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
10.
Qi
,
C. R.
,
Su
,
H.
,
Mo
,
K.
, and
Guibas
,
L. J.
,
2017
, “
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Hawaii, HI
,
July 21–26
, pp.
652
660
.
11.
Zhang
,
Z.
,
Hua
,
B.-S.
,
Rosen
,
D. W.
, and
Yeung
,
S.-K.
,
2019
, “
Rotation Invariant Convolutions for 3D Point Clouds Deep Learning
,”
International Conference on 3D Vision
,
Quebec, Canada
,
Sept. 16–19
, pp.
204
213
.
12.
Swift
,
K. G.
, and
Booker
,
J. D.
,
2013
,
Manufacturing Process Selection Handbook: From Design to Manufacture
,
Butterworth-Heinemann
,
Oxford, UK
.
13.
Zaman
,
U. K. U.
,
Rivette
,
M.
,
Siadat
,
A.
, and
Mousavi
,
S. M.
,
2018
, “
Integrated Product-Process Design: Material and Manufacturing Process Selection for Additive Manufacturing Using Multi-Criteria Decision Making
,”
Rob. Comput. Integr. Manuf.
,
51
, pp.
169
180
.
14.
JungHyun
,
H.
,
Pratt
,
M.
, and
Regli
,
W. C.
,
2000
, “
Manufacturing Feature Recognition From Solid Models: A Status Report
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
782
796
.
15.
Verma
,
A. K.
, and
Rajotia
,
S.
,
2010
, “
A Review of Machining Feature Recognition Methodologies
,”
Int. J. Comput. Integr. Manuf.
,
23
(
4
), pp.
353
368
.
16.
Gupta
,
S. K.
,
Chen
,
Y.
,
Feng
,
S.
, and
Sriram
,
R.
,
2003
, “
A System for Generating Process and Material Selection Advice During Embodiment Design of Mechanical Components
,”
J. Manuf. Syst.
,
22
(
1
), pp.
28
45
.
17.
Osada
,
R.
,
Funkhouser
,
T.
,
Chazelle
,
B.
, and
Dobkin
,
D.
,
2002
, “
Shape Distributions
,”
ACM Trans. Graph.
,
21
(
4
), pp.
807
832
.
18.
Ip
,
C. Y.
,
Regli
,
W. C.
,
Sieger
,
L.
, and
Shokoufandeh
,
A.
,
2003
, “
Automated Learning of Model Classifications
,”
Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications
,
Seattle, WA
,
June 16–20
, pp.
322
327
.
19.
Ip
,
C. Y.
, and
Regli
,
W. C.
,
2006
, “
A 3D Object Classifier for Discriminating Manufacturing Processes
,”
Comput. Graph.
,
30
(
6
), pp.
903
916
.
20.
Biasotti
,
S.
,
Cerri
,
A.
,
Bronstein
,
A.
, and
Bronstein
,
M.
,
2016
, “
Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment
,”
Comput. Graphics Forum
,
35
(
6
), pp.
87
119
.
21.
Zhang
,
Z.
,
Jaiswal
,
P.
, and
Rai
,
R.
,
2018
, “
FeatureNet: Machining Feature Recognition Based on 3D Convolution Neural Network
,”
Comput.-Aided Des.
,
101
, pp.
12
22
.
22.
Wu
,
Z.
,
Wang
,
X.
,
Lin
,
D.
,
Lischinski
,
D.
,
Cohen-Or
,
D.
, and
Huang
,
H.
,
2019
, “
SAGNet: Structure-Aware Generative Network for 3D-Shape Modeling
,”
ACM Trans. Graph.
,
38
, pp.
1
14
.
23.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press, Cambridge
,
MA
.
24.
Guo
,
Y.
,
Wang
,
H.
,
Hu
,
Q.
,
Liu
,
H.
,
Liu
,
L.
, and
Bennamoun
,
M.
,
2020
, “
Deep Learning for 3D Point Clouds: A Survey
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
43
(
12
), pp.
4338
4364
.
25.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
,”
International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
922
928
.
26.
Fang
,
Y.
,
Xie
,
J.
,
Dai
,
G.
,
Wang
,
M.
,
Zhu
,
F.
,
Xu
,
T.
, and
Wong
,
E.
,
2015
, “
3D Deep Shape Descriptor
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 8–10
, pp.
2319
2328
.
27.
Liu
,
Y.
,
Fan
,
B.
,
Xiang
,
S.
, and
Pan
,
C.
,
2019
, “
Relation-shape Convolutional Neural Network for Point Cloud Analysis
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Long Beach, CA
,
June 16–20
, pp.
8895
8904
.
28.
Liu
,
Y.
,
Fan
,
B.
,
Meng
,
G.
,
Lu
,
J.
,
Xiang
,
S.
, and
Pan
,
C.
,
2019
, “
DensePoint: Learning Densely Contextual Representation for Efficient Point Cloud Processing
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision
,
Seoul, South Korea
,
Oct. 27–Nov. 2
, pp.
5239
5248
.
29.
Xu
,
T. F. Y.
,
Xu
,
M.
,
Zeng
,
L.
, and
Qiao
,
Y.
,
2018
, “
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters
,”
European Conference on Computer Vision
,
Munich, Germany
,
Sept. 8–14
, pp.
87
102
.
30.
Li
,
Y.
,
Bu
,
R.
,
Sun
,
M.
,
Wu
,
W.
,
Di
,
X.
, and
Chen
,
B.
,
2018
, “
PointCNN: Convolution on x-Transformed Points
,”
Conference on Neural Information Processing Systems
,
Montreal, Canada
,
Dec. 3–8
, pp.
820
830
.
31.
Wang
,
Y.
,
Sun
,
Y.
,
Liu
,
Z.
,
Sarma
,
S. E.
,
Bronstein
,
M. M.
, and
Solomon
,
J. M.
,
2019
, “
Dynamic Graph CNN for Learning on Point Clouds
,”
ACM Trans. Graph.
,
38
, pp.
1
12
.
32.
Zhang
,
K.
,
Hao
,
M.
,
Wang
,
J.
,
de Silva
,
C. W.
, and
Fu
,
C.
,
2019
, “
Linked Dynamic Graph CNN: Learning on Point Cloud via Linking Hierarchical Features
,”
arXiv preprint
. https://arxiv.org/abs/1904.10014
33.
Wang
,
C.
,
Samari
,
B.
, and
Siddiqi
,
K.
,
2018
, “
Local Spectral Graph Convolution for Point Set Feature Learning
,”
European Conference on Computer Vision
,
Munich, Germany
, pp.
52
66
.
34.
Lee
,
J.
,
Lee
,
H.
, and
Mun
,
D.
,
2022
, “
3D Convolutional Neural Network for Machining Feature Recognition With Gradient-Based Visual Explanations From 3D CAD Models
,”
Sci. Rep.
,
12
(
1
), p.
14864
.
You do not currently have access to this content.