Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Space trusses usually have a significant number of elements. As a result, it is inevitable that some elements have imperfections. In this study, the authors proposed a mixed finite element method for nonlinear geometrical analysis of space trusses. The post-buckling behavior of space trusses with length imperfections was predicted using a code list written in the programming software. The numerical results indicate that when the length imperfection approaches zero, the results converge to those obtained in studies on standard trusses. A second approach based on the displacement model is also proposed, in which the Lagrange multiplier method is used to deal with the member length imperfection. The results show that the two approaches proposed by the authors are effective, in which the mix formulation based on the finite element model is superior to that based on the displacement model. These results verify the accuracy of the method. Based on the proposed method, the effects of imperfections in the element layers on the truss were studied. The results show that the imperfections in the top two element layers have the maximum influence on the limit load value, whereas the remaining layers have a negligible influence. The combination of the imperfect lengths of these two layers of elements can produce results in which the limit load value is much larger than in the case of a perfect system. Based on the obtained results, it is possible to provide a solution for improving the overall stability of truss structures by creating reasonable imperfections.

References

1.
El-Sheikh
,
A.
,
1997
, “
Effect of Member Length Imperfections on Triple-Layer Space Trusses
,”
Eng. Struct.
,
19
(
7
), pp.
540
550
.
2.
Zhao
,
Z.-W.
,
Liu
,
H.-Q.
,
Liang
,
B.
, and
Yan
,
R.-Z.
,
2019
, “
Influence of Random Geometrical Imperfection on the Stability of Single Layer Reticulated Domes With Semi Rigid Connection
,”
Adv. Steel Constr.
,
15
(
1
), pp.
93
99
.
3.
Zhou
,
Z.
,
Wu
,
J.
, and
Meng
,
S.
,
2014
, “
Influence of Member Geometric Imperfection on Geometrically Non-Linear Buckling and Seismic Performance of Suspend-Dome Structures
,”
Int. J. Struct. Stab. Dyn.
,
14
(
3
), p.
1350070
.
4.
Ding
,
Y.
, and
Zhang
,
T.-l.
,
2019
, “
Research on Influence of Member Initial Curvature on Stability of Single-Layer Spherical Reticulated Domes
,”
Adv. Steel Constr.
,
15
(
1
), p.
915
.
5.
Papadrakakis
,
M.
,
1983
, “
Inelastic Post-Buckling Analysis of Trusses
,”
J. Struct. Eng.
,
109
(
9
), pp.
2129
2147
.
6.
Smith
,
E.
,
1984
, “
Space Truss Non-Linear Analysis
,”
J. Struct. Eng.
,
110
(
4
), pp.
688
705
.
7.
Murtha-Smith
,
E.
,
1978
, “
Alternate Path Analysis of Space Trusses for Progressive Collapse
,”
J. Struct. Eng.
,
114
(
9
), pp.
1978
1999
.
8.
Hill
,
C. D.
,
Blandford
,
G. E.
, and
Wang
,
S. T.
,
1989
, “
Post-Buckling Analysis of Steel Space Trusses
,”
J. Struct. Eng.
,
115
(
4
), pp.
900
919
.
9.
Thai
,
H.-T.
, and
Kim
,
S.-E.
,
2009
, “
Large Deflection Inelastic Analysis of Space Trusses Using Generalized Displacement Control Method
,”
J. Constr. Steel Res.
,
65
(
10–11
), pp.
1987
1994
.
10.
De Freitas
,
J. A. T.
, and
Ribei
,
A. C. B. S.
,
1992
, “
Large Displacement Elastoplastic Analysis of Space Trusses
,”
Comput. Struct.
,
44
(
5
), pp.
1007
1016
.
11.
Ramesh
,
G.
, and
Krishnamoorthy
,
C. S.
,
1994
, “
Inelastic Post-Buckling Analysis of Truss Structures by Dynamic Relaxation Method
,”
Int. J. Numer. Methods Eng.
,
37
(
21
), pp.
3633
3657
.
12.
Blandford
,
G. E.
,
1996
, “
Large Deformation Analysis of Inelastic Space Truss Structures
,”
J. Struct. Eng.
,
122
(
4
), pp.
407
415
.
13.
Blandford
,
G. E.
,
1996
, “
Progressive Failure Analysis of Inelastic Space Truss Structures
,”
Comput. Struct.
,
58
(
5
), pp.
981
990
.
14.
Yang
,
Y. B.
, and
Kuo
,
S. R.
,
1981
,
Theory and Analysis of Non-Linear Frames Structures
,
Prentice Hall
,
Singapore
.
15.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles Snap-Through
,”
Comput. Struct.
,
13
(
1–3
), pp.
55
62
.
16.
Kassimali
,
A.
, and
Bidhendi
,
E.
,
1988
, “
Stability of Trusses Under Dynamic Loads
,”
Comput. Struct.
,
29
(
3
), pp.
381
392
.
17.
Pecknold
,
D. A.
,
Ghaboussi
,
J.
, and
Healey
,
T. J.
,
1985
, “
Snap-Through and Bifurcation in a Simple Structure
,”
J. Eng. Mech.
,
111
(
7
), pp.
909
922
.
18.
Galerkin
,
B. G.
,
1915
, “
Series Solution of Some Problems in Elastic Equilibrium of Rods and Plates
,”
Vestn. Inzh. Tech.
,
19
(
1
), pp.
897
908
.
19.
Bathe
,
K. J.
,
2016
,
Finite Element Procedures
,
Prentice Hall
,
NJ, USA
.
20.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
21.
Reissner
,
E.
,
1950
, “
On a Variational Theorem in Elastictiy
,”
J. Math. Phys.
,
29
(
1–4
), pp.
90
95
.
22.
Hu
,
H. C.
,
1954
, “
On Some Variational Methods on the Theory of Elasticity and the Theory of Plasticity
,”
Acta Phys. Sin.
,
10
(
3
), pp.
259
290
.
23.
Washizu
,
K.
,
1955
, “
On the Variational Principles of Elasticity and Plasticity
,” Aeroelastic and Structure Research Laboratory, Technical Report No. 25-18, MIT, Cambridge.
24.
Fraeijs de Veubeke
,
B. M.
,
1951
, “Diffusion des inconnues hyperstatiques dans les voilures à longeron couplés,”
Bull. Serv. Technique de L’Aéronautique
,
Imprimeŕıe Marcel Hayez
,
Bruxelles
.
25.
Noor
,
A. K.
, and
Peters
,
J. M.
,
1981
, “
Mixed Models and Reduced/Selective Integration Displacement Models for Non-Linear Analysis of Curved Beams
,”
Int. J. Numer. Methods Eng.
,
17
(
4
), pp.
615
631
.
26.
Noor
,
A. K.
,
Greene
,
W. H.
, and
Hartley
,
S. J.
,
1977
, “
Non-Linear Finite Element Analysis of Curved Beams
,”
Comput. Methods Appl. Mech. Eng.
,
12
(
3
), pp.
289
307
.
27.
Horák
,
M.
,
La Malfa Ribolla
,
E.
, and
Jirásek
,
M.
,
2022
, “
Efficient Formulation of a Two-Noded Geometrically Exact Curved Beam Element
,”
Int. J. Numer. Methods Eng.
,
124
(
3
), pp.
570
619
.
28.
Quyen
,
V. T. B.
,
Tien
,
D. N.
, and
Huong
,
N. T. L.
,
2020
, “
Mixed Finite Element Method for Geometrically Non-Linear Buckling Analysis of Truss With Member Length Imperfection
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
960
(
2
), p.
022075
.
29.
Arbogast
,
T.
,
Wheeler
,
M. F.
, and
Yotov
,
I.
,
1997
, “
Mixed Finite Elements for Elliptic Problems With Tensor Coefficients as Cell-Centered Finite Differences
,”
SIAM J. Numer. Anal.
,
34
(
2
), pp.
828
852
.
30.
Babuška
,
I.
,
1973
, “
The Finite Element Method With Lagrangian Multipliers
,”
Numer. Math.
,
20
(
2
), pp.
179
192
.
31.
Brezzi
,
F.
,
1974
, “
On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising From Lagrangian Multipliers
,”
R.A.I.R.O. Analyse Numérique
,
8
(
R2
), pp.
129
151
.
32.
Boffi
,
D.
,
Brezzi
,
F.
, and
Fortin
,
M.
,
2013
,
Mixed Finite Element Methods and Applications
,
Springer
,
Heidelberg
.
33.
Auricchio
,
F.
,
Brezzi
,
F.
, and
Lovadina
,
C.
,
2004
,
Encyclopedia of Computational Mechanics
,
John Wiley & Sons, Ltd
,
New York
.
34.
Lam
,
W. F. J.
, and
Morley
,
C. T.
,
1992
, “
Arc-Length Method for Passing Limit Points in Structural Calculation
,”
J. Struct. Eng.
,
118
(
1
), pp.
169
185
.
35.
Powell
,
G.
, and
Simons
,
J.
,
1981
, “
Improved Iteration Strategy for Non-Linear Structures
,”
Int. J. Numer. Methods Eng.
,
17
(
10
), pp.
1455
1467
.
36.
Ritto-Corrêa
,
M.
, and
Camotim
,
D.
,
2008
, “
On the Arc-Length and Other Quadratic Control Methods: Established, Less Known and New Implementation Procedures
,”
Comput. Struct.
,
86
(
11–12
), pp.
1353
1368
.
37.
Yang
,
Y. B.
,
Yang
,
C. T.
,
Chang
,
T. P.
, and
Chang
,
P. K.
,
1997
, “
Effects of Member Buckling and Yielding on Ultimate Strengths of Space Trusses
,”
Eng. Struct.
,
19
(
2
), pp.
179
191
.
38.
Saffari
,
H.
,
Mirzai
,
N. M.
,
Mansouri
,
I.
, and
Bagheripour
,
M. H.
,
2013
, “
Efficient Numerical Method in Second-Order Inelastic Analysis of Space Trusses
,”
J. Comput. Civil Eng.
,
27
(
2
), pp.
129
138
.
39.
Shirazi
,
M. I.
,
Khatir
,
S.
,
Benaissa
,
B.
,
Mirjalili
,
S.
, and
Abdel Wahab
,
M.
,
2023
, “
Damage Assessment in Laminated Composite Plates Using Modal Strain Energy and YUKI-ANN Algorithm
,”
Compos. Struct.
,
303
(
1
), p.
116272
.
40.
Khatir
,
A.
,
Capozucca
,
R.
,
Khatir
,
S.
,
Magagnini
,
E.
,
Benaissa
,
B.
,
Le Thanh
,
C.
, and
Abdel Wahab
,
M.
,
2023
, “
A New Hybrid PSO-YUKI for Double Cracks Identification in CFRP Cantilever Beam
,”
Compos. Struct.
,
311
(
5
), p.
116803
.
41.
Li
,
W.
, and
McAdams
,
D. A.
,
2015
, “
Designing Optimal Origami Structures by Computational Evolutionary Embryogeny
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011010
.
42.
Liu
,
Y.
,
Cai
,
J.
,
Li
,
H.
, and
Gao
,
Q.
,
2023
, “
Optimal Design and Sensitivity Analysis of the Dynamic Vibration Absorber With Amplifying Mechanism
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
5
), p.
051005
.
43.
Sharma
,
S.
,
Purwar
,
A.
, and
Jeffrey Ge
,
Q.
,
2018
, “
An Optimal Parametrization Scheme for Path Generation Using Fourier Descriptors for Four-Bar Mechanism Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
014501
.
44.
Xue
,
D.
, and
Imaniyan
,
D.
,
2021
, “
An Integrated Framework for Optimal Design of Complex Mechanical Products
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041004
.
You do not currently have access to this content.