The modal analysis approach to modeling of structures and acoustic systems results in infinite-dimensional models. For control design purposes, these models are simplified by removing higher frequency modes which lie out of the bandwidth of interest. Truncation can considerably perturb the in-bandwidth zeros of the truncated model. This paper suggests a method of minimizing the effect of the removed higher order modes on the low frequency dynamics of the truncated model by adding a zero frequency term to the low order model of the system. [S0022-0434(00)01501-X]

1.
Meirovitch, L. 1986, Elements of Vibration Analysis, 2nd Edition, McGraw-Hill, Sydney.
2.
Fraser, A. R., and Daniel, R. W., 1991, Perturbation Techniques for Flexible Manipulators, Kluwer Academic Publishers, MA.
3.
Alberts
,
T. E.
,
Colvin
,
J. A.
,
1991
, “
Observations on the Nature of Transfer Functions for Control of Piezoelectric Laminates.
J. Intell. Mater. Syst. Struct.
,
8
, pp.
605
611
.
4.
Hong
,
J.
,
Akers
,
J. C.
,
Venugopal
,
R.
,
Lee
,
M.
,
Sparks
,
A. G.
,
Washabaugh
,
P. D.
, and
Bernstein
,
D.
,
1996
, “
Modeling, Identification, and Feedback Control of Noise in an Acoustic Duct
,”
IEEE Trans. Control Syst. Technol.
,
4
, No.
3
, pp.
283
291
.
5.
Bisplinghoff, R. L., and Ashley, H., 1962, Principles of Aeroelasticity, Dover Publications, New York.
6.
Clark
,
R. L.
,
1997
, “
Accounting for Out-of-Bandwidth Modes in the Assumed Modes Approach: Implications on Colocated Output Feedback Control
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, pp.
390
395
.
7.
Zhu
,
X.
, and
Alberts
,
T. A.
,
1998
, “
Appending a Synthetic Mode to Compensate for Truncated Modes in Coliocated Control
,” Proc. of AIAA GNC, Boston.
8.
Pota
,
H. R.
, and
Alberts
,
T. E.
,
1995
, “
Multivariable Transfer Functions for a Slewing Piezoelectric Laminate Beam
,”
ASME J. Dyn. Syst., Meas., Control
,
117
, pp.
353
359
.
9.
Alberts
,
T. E.
,
DuBois
,
T. V.
, and
Pota
,
H. R.
,
1995
, “
Experimental Verification of Transfer Functions for a Slewing Piezoelectric Laminate Beam
,”
Control. Eng.
,
3
, pp.
163
170
.
10.
Pota
,
H. R.
, and
Alberts
,
T. E.
,
1997
, “
Vibration Analysis Using Symbolic Computation Software
,” Proc. of the 1997 American Control Conference, Albuquerque, NM, pp. 1400–1401.
11.
Moheimani
,
S. O. R.
,
Petersen
,
I. R.
, and
Pota
,
H. R.
,
1997
, “
Broadband Disturbance Attenuation over an Entire Beam
,” Proc. European Control Conference, Brussels, Belgium, to appear in the J. Sound. Vib.
12.
Moheimani
,
S. O. R.
,
Pota
,
H. R.
, and
Petersen
,
I. R.
,
1999
, “
Spatial Balanced Model Reduction for Flexible Structures
,”
Automatica
,
35
, pp.
269
277
.
13.
Moheimani
,
S. O. R.
,
Pota
,
H. R.
, and
Petersen
,
I. R.
,
1997
, “
Active Vibration Control—A Spatial LQR Approach
,” Proc. Control 97, Sydney, Australia, pp. 622–627.
14.
Moheimani
,
S. O. R.
,
Pota
,
H. R.
, and
Petersen
,
I. R.
,
1998
, “
Active Control of Noise and Vibration in Acoustic Ducts and Flexible Structures—A Spatial Control Approach
,” Proc. of the 1998 American Control Conference, Philadelphia, PA, pp. 2601–2605.
15.
Lewis, F. L., 1992, Applied Optimal Control and Estimation, Prentice Hall, New Jersey.
You do not currently have access to this content.