A modeling compensation method is introduced to enhance the performance of the extended Kalman filter (EKF) in coping with the uncertainty of estimation model. In this method, single-input single-output radial basis function (RBF) modules are embedded within the nonlinear estimation model to provide additional degrees of freedom for model adaptation. The weights of the embedded RBF modules are adapted by the EKF, concurrent with state estimation. This compensation method is tested in application to a benchmark problem. Simulation results indicate that the RBF modules provide the means to model the uncertain components of the estimation model within their range of variation.

1.
Krstic, M., Kanellakopoulos, I., and Kokotovic, P., 1995, Nonlinear and Adaptive Control Design, Wiley, New York, NY.
2.
Frank
,
P. M.
,
1990
, “
Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and some new results
,”
Automatica
,
26
, No.
2
, pp.
459
474
.
3.
Gelb, A., 1974, Applied Optimal Estimation, MIT Press, Cambridge, MA.
4.
Luenberger
,
D. G.
,
1971
, “
An introduction to observers
,”
IEEE Trans. Autom. Control
,
AC16
, No.
6
, pp.
596
602
.
5.
Tse
,
E.
, and
Athans
,
M.
,
1970
, “
Optimal minimal-order observer estimators for discrete linear time-varying systems
,”
IEEE Trans. Autom. Control
,
AC-15
, pp.
416
426
.
6.
Bestle
,
D.
, and
Zeitz
,
M.
,
1993
, “
Canonical form observer design for nonlinear time-variable systems
,”
Int. J. Control
,
38
, No.
2
, pp.
419
431
.
7.
Gauthier
,
J. P.
, and
Kupka
,
I. A. K.
,
1994
, “
Observability and observer for nonlinear systems
,”
SIAM J. Control Optim.
,
32
, No.
4
, pp.
975
994
.
8.
Chao
,
C. T.
, and
Teng
,
C. C.
,
1996
, “
A fuzzy neural network based extended kalman filter
,”
Int. J. Syst. Sci.
,
27
, No.
3
, pp.
333
339
.
9.
Kim
,
Y. H.
,
Frank
,
L. L.
, and
Chaouki
,
T. A.
,
1997
, “
A dynamic recurrent neural-network-based adaptive observer for a class of nonlinear systems
,”
Automatica
,
33
, No.
8
, pp.
1539
1543
.
10.
Gauthier
,
J. P.
,
Hammouri
,
H.
, and
Othman
,
S.
,
1992
, “
A simple observer for nonlinear systems: application to bioreactors
,”
IEEE Trans. Autom. Control
,
37
, pp.
875
880
.
11.
Vidyasagar, M., 1993, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.
12.
Misawa
,
E. A.
, and
Hedrick
,
J. K.
,
1989
, “
Nonlinear observer-a state of the art survey
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, pp.
344
352
.
13.
Sorenson, H. W., 1985, Kalman Filtering: Theory and Application, IEEE Press, New York, N.Y.
14.
Song, Y., and Grizzle, J. W., 1992, “The extended kalman filter as a local asymptotic observer for nonlinear discrete-time systems,” in Proc. of the American Control Conference, Chicago, IL, pp. 3365–3369.
15.
Drakunov, S., 1992, “Sliding mode observers based on equivalent control method,” Proc. of the 31st IEEE Conf. on Decision and Control, Tucson, Arizona, pp. 2368–2369.
16.
Krishnaswami, V., and Rizzoni, G., 1995, “Vehicle steering system state estimation using sliding mode observers,” Proc. of the 34th Conference on Decision & Control, New Orleans, LA, pp. 3391–3396.
17.
Drakunov
,
S. V.
,
1983
, “
An adaptive quasioptimal filter with discontinuous parameters
,”
Autom. Remote Control
,
44
, No.
2
, pp.
76
86
.
18.
Slotine
,
J. E.
,
Hedrick
,
J. K.
, and
Hedrick
,
M. E. A.
,
1987
, “
On sliding observers
,”
ASME J. Dyn. Syst., Meas., Control
,
109
, pp.
245
252
.
19.
Krener
,
A. J.
, and
Isidori
,
W.
,
1983
, “
Linearization by output injection and nonlinear observer
,”
Syst. Control Lett.
,
3
, pp.
47
52
.
20.
Narendra, K. S., and Annaswamy, A. M., 1989, Stable Adaptive Systems Prentice Hall, Englewood Cliffs, NJ.
21.
Kreisselmeier
,
G.
,
1977
, “
Adaptive observers with exponential rate of convergence
,”
IEEE Trans. Autom. Control
,
22
, pp.
2
8
.
22.
Shoureshi, R., and Chu, R., 1993, “Hopfield-based adaptive observers: next generation of luenberger state estimators,” IEEE Int. Conference on Neural Networks, Piscataway, New Jersey, Apr., pp. 1289–1294.
23.
Gan, C., 2000, “Embedded radial basis function networks to compensate for modeling uncertainty of nonlinear dynamic systems,” Doctoral dissertation, University of Massachusetts Amherst, Department of Mechanical and Industrial Engineering.
24.
Ljung
,
L.
,
1979
, “
Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems
,”
IEEE Trans. Autom. Control
,
AC24
, No.
1
, pp.
36
50
.
25.
Ljung
,
L.
,
1977
, “
Analysis of recurive stochastic algorithms
,”
IEEE Trans. Autom. Control
,
AC22
, No.
4
, pp.
551
575
.
26.
Ortega, R., Chang, G., and Mendes, E., 1998, Control of Induction Motors: A Benchmark Problem, for Nonlinear Control. http://www.supelec.fr/invi/lss/fr/personels/ortega/benchmi/benchmi.html.
You do not currently have access to this content.