This paper reports the experimental system identification of the Jet Propulsion Laboratory MEMS vibratory rate gyroscope. A primary objective is to estimate the orientation of the stiffness matrix principal axes for important sensor dynamic modes with respect to the electrode pick-offs in the sensor. An adaptive lattice filter is initially used to identify a high-order two-input/two-output transfer function describing the input/output dynamics of the sensor. A three-mode model is then developed from the identified input/output model to determine the axes’ orientation. The identified model, which is extracted from only two seconds of input/output data, also yields the frequency split between the sensor’s modes that are exploited in detecting the rotation rate. The principal axes’ orientation and frequency split give direct insight into the source of quadrature measurement error that corrupts detection of the sensor’s angular rate.

1.
Tang, T. K., Gutierrez, R. C., Wilcox, J. Z., Stell, C., Voperian, V., Calvet, R., Li, W., Charkaborty, I., Bartman, R., and Kaiser, W. J., 1996, “Silicon Bulk Micromachined Vibratory Gyroscope,” Technical Digest of the Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, pp. 288-293.
2.
Yazdi
,
N.
,
Ayazi
,
F.
, and
Najafi
,
K.
,
1998
, “
Micromachined Inertial Sensors
,”
Proc. IEEE
,
86
, No.
8
, pp.
1640
1659
.
3.
Zhbanov
,
Yu. K.
, and
Zhuravlev
,
V. F.
,
1998
, “
On the Balancing of a Hemispherical Resonator Gyro
,”
Mech. Solids
,
33
, No.
4
, pp.
2
13
.
4.
Newton
,
G. C.
,
1963
, “
Theory and Practice in Vibratory Rate Gyros
,”
Control. Eng.
,
10
, No.
6
, pp.
95
99
.
5.
Morrow
,
C. T.
,
1955
, “
Zero Signals in the Sperry Tuning Fork Gyrotron
,”
J. Acoust. Soc. Am.
,
27
, No.
3
, pp.
581
585
.
6.
Lynch, D. D., 1995, “Vibratory Gyro Analysis by the Method of Averaging,” The 2nd Saint Petersburg International Conference on Gyroscopic Technology and Navigation, Scientific Council of the Russian Academy of Sciences on the Traffic Control and Navigation Problems, Part I, pp. 26–34.
7.
Lynch, D. D., 1998, “Coriolis Vibratory Gyros,” Proceedings, Symposium Gyro Technology, Stuttgart, Vol. 1, pp. 1–14.
8.
M’Closkey, R. T., Vakakis, A. F., and Gutierrez, R., 2001, “Mode Localization Induced by a Nonlinear Control Loop,” Nonlinear Dyn., (to appear).
9.
Tang, T. K., Gutierrez, R. C., Wilcox, J. Z., Stell, C., Vorperian, V., Dickerson, M., Goldstein, B., Savino, J. L., Li, W. J., and Calvet, R., 1996, “Silicon Bulk Micromachined Vibratory Gyroscope for Microspacecraft.” Proceedings, The International Society for Optical Engineering (SPIE), Denver, CO., Vol. 2810, pp. 101–115.
10.
Tang, T. K., Gutierrez, R. C., Stell, C. B., Vorperian, V., Arakaki, G. A., Rice, J. T., Li, W. J., Chakraborty, I., Shcheglov, K., Wilcox, J. Z., and Kaiser, W. J., 1997, “A Packaged Silicon MEMS Vibratory Gyroscope for Microspacecraft,” Proceedings IEEE, The Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, pp. 500–505.
11.
Lawrence, A., 1998, Modern Inertial Technology: Navigation, Guidance, and Control, Springer-Verlag, New York.
12.
Jiang
,
S.-B.
, and
Gibson
,
J. S.
,
1995
, “
An Unwindowed Multichannel Lattice Filter With Orthogonal Channels
,”
IEEE Trans. Signal Process.
,
43
, No.
12
, pp.
2831
2842
.
13.
Jiang, S.-B., Gibson, J. S., and Hollkamp, J. J., 1992, “Identification of a Flexible Structure by a New Multichannel Lattice Filter,” Proc. of 1992 American Control Conference, pp. 1681–1685.
14.
Green, M., and Limebeer, D., 1995, Linear Robust Control, Prentice-Hall, NJ.
15.
Zhou, K., Doyle, J., and Glover, K., 1996, Robust and Optimal Control, Prentice Hall, NJ.
You do not currently have access to this content.