Flight behavior of a mortar launched, parachute deployed imaging system is examined with particular attention to characterizing the quantity and quality of recorded image data. Coverage area of the imager, blur due to motion of the imager, and view time are evaluated for different system configurations allowing important design parameters to be identified. It is shown that proper tailoring of the dynamic characteristics of the system greatly improves gathered image data quantity and quality. Coning of the canister is an important system characteristic that largely drives total ground coverage. Canister coning is influenced in a complex manner by system geometric parameters. Mounting the parachute riser to the canister in such a way that the connection is off the axis of symmetry of the canister is a powerful technique to increase coning of the canister. Likewise, increasing riser length also yields increased coning. Increasing spin rate of the canister leads to a proportional increase in image blur, which is largest toward the edge of the image. Also, increased canister weight tends to increase the descent rate, which reduces total view time. At the same time, increased descent rate increases the spin rate for cross type parachutes, leading to increased image blur.

1.
White, F. M., and Wolf, D. F., 1966, “A Theory of Three-Dimensional Parachute Dynamic Stability,” AIAA Aerodynamic Deceleration Systems Conference, Houston, TX, September 7–9.
2.
Wolf, D., 1970, “Dynamic Stability of a Nonrigid Parachute and Payload System,” AIAA 8th Aerospace Sciences Meeting, New York, January 19–21.
3.
Shpund
,
Z.
, and
Levin
,
D.
,
1994
, “
Static and Dynamic Coefficients of a Cross-Type Parachute
,”
J. Aircr.
,
31
, pp.
132
137
.
4.
Doherr, K. F., and Schiling, H., 1991, “9DOF-Simulation of Rotating Parachute Systems,” AIAA 12th Aerodynamic Decelerator and Ballon Tech. Conf.
5.
Neustadt, M., Ericksen, R. E., Guiteras, J. J., and Larrivee, J. A., 1966, “A Parachute Recovery System Dynamic Analysis,” AIAA Paper No. 66–25, 3rd Aerospace Science Meeting, New York.
6.
Shpund
,
Z.
, and
Levin
,
D.
,
1997
, “
Forebody Influence on Rotating Parachute Aerodynamic Properties
,”
J. Aircr.
,
34
, pp.
181
186
.
7.
Hutchins
,
R. G.
, and
Sworder
,
D. D.
,
1991
, “
Image Fusion Algorithms for Tracking Maneuvering Targets
,”
J. Guid. Control Dyn.
,
15
, pp.
175
184
.
8.
Rastogi
,
A. K.
,
Chatterji
,
B. N.
, and
Ray
,
A. K.
,
1997
, “
Design of a Real-Time Tracking System for Fast-Moving Objects
,”
IETE J. Res.
,
43
, pp.
359
369
.
9.
Gilbert
,
A. J.
,
Giles
,
M. K.
,
Flachs
,
G. M.
,
Rogers
,
R. B.
, and
Yee
,
H. U.
,
1980
, “
A Real-Time Video Tracking System
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-2
, pp.
47
56
.
10.
Smith
,
S. M.
, and
Brady
,
J. M.
,
1994
, “
A Scene Segmenter: Visual Tracking of Moving Vehicles
,”
Eng. Applic. Artif. Intell.
,
7
, pp.
191
204
.
11.
Chen
,
L.
, and
Chang
,
S.
,
1992
, “
A Video Tracking System With Adaptive Predictors
,”
Pattern Recogn.
,
25
, pp.
1171
1180
.
12.
Pei
,
S.
, and
Liou
,
L.
,
1998
, “
Vehicle-Type Motion Estimation by the Fusion of Image Point and Line Features
,”
Pattern Recogn.
,
31
, pp.
333
344
.
13.
Mohanty
,
N. C.
,
1981
, “
Computer Tracking of Moving Point Targets in Space
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-3
, pp.
606
611
.
14.
Lee
,
H.
,
Huang
,
L.
, and
Chen
,
Z.
,
1990
, “
Multi-Frame Ship Detection and Tracking in an Infrared Image Sequence
,”
Pattern Recogn.
,
23
, pp.
785
798
.
15.
Kundur
,
S.
, and
Ravin
,
D.
,
2000
, “
Active Vision-Based Control Schemes for Autonomous Navigation Tasks
,”
Pattern Recogn.
,
33
, pp.
295
308
.
16.
Kerr, D., Bouazza-Marouf, K., and West, T. C., 1999, “An Inexpensive Pointing and Tracking System Using TV Cameras and an Optical Fibre Beacon, Mechatronics,” 9, pp. 919–927.
17.
Azarbayejani
,
A. J.
, and
Alexander
,
H. L.
,
1991
, “
Vision Navigator for Free-Flying Robots
,”
Proc. SPIE
,
1612
, pp.
257
265
.
18.
Sandwich
,
S.
,
1998
, “
Real-Time Videogrammetry Uncertainty Computation and Test Results
,”
Proc. SPIE
,
3520
, pp.
111
122
.
19.
Schalkoff
,
R. J.
,
1982
, “
A Model and Tracking Algorithm for a Class of Video Targets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
PAMI-4
, pp.
2
10
.
20.
Best
,
L.
, and
Magee
,
M.
,
1998
, “
Autonomous Construction of Three-Dimensional Models From Range Data
,”
Pattern Recogn.
,
31
, pp.
128
136
.
21.
Mitchell, E. N., 1984, Photographic Science, John Wiley & Sons, Inc.
22.
Moffet, F. H., and Mikhail, Edward M., 1980, Photogrammetry, Harper & Row.
23.
Kasser, M., and Egels, Y., 2002, Digital Photogrammetry, Taylor & Francis.
24.
Jensen, J. R., 1996, Introductory Digital Image Processing A Remote Sensing Perspective, Prentice–Hall, Inc.
25.
Avery, T. E., and Berlin, G. L., 1985, Fundamentals of Remote Sensing and Airphoto Interpretation, Prentice–Hall, Inc.
26.
Von Mises, R., 1959, Theory of Flight, Dover Publications Inc.
27.
PRODAS—Projectile Design and Analysis, Arrow Tech Associates, Inc., 1233 Shelburne Road, Suite D-8, Pierson House, South Burlington, VT 05403, 2002.
28.
Wolfe, W. P., and Peterson, C. W., “Modeling of Parachute Suspension Line Wrap,” AIAA with permission, Sandia National Laboratories, 2001, AIAA-2001-2025.
29.
“MIT Digital Orthophoto Browser,” Massachusetts Geographical Information Systems: Massachusetts Executive Office of Environmental Affairs, Planning_Support Systems Group, M.I.T. Department of Urban Studies and Planning, 5 February, 1998, http://ortho.mit.edu/nsdi/index.html.
You do not currently have access to this content.