This paper investigates the H output feedback control design for a class of uncertain nonlinear systems with Markovian jumps which can be described by Takagi-Sugeno models. Based on a linear matrix inequality (LMI), LMI-based sufficient conditions for the existence of a robust output feedback controller, such that the L2-gain from an exogenous input to a regulated output is less than or equal to a prescribed value, are derived. An illustrative example is used to demonstrate the effectiveness of the proposed design techniques.

1.
Sethi
,
S. P.
, and
Zhang
,
Q.
, 1994,
Hierarchical Decision Making in Stochastic Manufacturing Systems
,
Birkhauser
, Boston.
2.
Mariton
,
M.
, 1990,
Jump Linear Systems in Automatic Control
,
Marcel Dekker
, New York.
3.
Boukas
,
E. K.
, and
Shi
,
P.
, 1998, “
Stochastic Stability and Guaranteed Cost Control of Discrete-Time Uncertain Systems With Markovian Jumping Parameters
,”
Int. J. Robust Nonlinear Control
1049-8923,
8
, pp.
1155
1167
.
4.
Costa
,
O. L. V.
, and
Fragoso
,
M. D.
, 1993, “
Stability Results for Discrete-Time Linear Systems with Markovian Jumping Parameters
,”
J. Math. Anal. Appl.
0022-247X,
179
, pp.
154
178
.
5.
Dragan
,
V.
,
Shi
,
P.
, and
Boukas
,
E. K.
, 1999, “
Control of Singularly Perturbed Systems with Markovian Jump Parameters: An H∞ Approach
,”
Automatica
0005-1098,
35
, pp.
1369
1378
.
6.
Shi
,
P.
, and
Boukas
,
E. K.
, 1997, “
H∞ Control for Markovian Jumping Linear Systems with Parametric Uncertainty
,”
J. Optim. Theory Appl.
0022-3239,
95
, pp.
75
99
.
7.
Boukas
,
E. K.
,
Shi
,
P.
,
Nguang
,
S. K.
, and
Agarwal
,
R. K.
, 1999, “
Robust H∞ Control of a Class of Nonlinear Systems with Markovian Jumping Parameters
,”
Proceedings of the IEEE American Control Conference
,
IEEE
, New York, pp.
970
976
.
8.
de Souza
,
C. E.
, and
Fragoso
,
M. D.
, 1993, “
H∞ Control for Linear Systems with Markovian Jumping Parameters
,”
Control Theory Adv. Technol.
0911-0704,
9
, pp.
457
466
.
9.
Mariton
,
M.
, and
Bertrand
,
P.
, 1985, “
Output Feedback for a Class of Linear Systems with Stochastic Jump Parameters
,”
IEEE Trans. Autom. Control
0018-9286,
30
, pp.
898
900
.
10.
de Farias
,
D. P.
,
Geromel
,
J. C.
,
do Val
,
J. B. R.
, and
Costa
,
O. L. V.
, 2002, “
Output Feedback Control of Markov Jump Linear Systems in Continuous Time
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
944
949
.
11.
Aliyu
,
M. D. S.
, and
Boukas
,
E. K.
, 1998, “
H∞ Control for Markovian Jump Nonlinear Systems
,”
Proceedings of the 37th IEEE Conference on Decision and Control
,
IEEE
, New York, pp.
766
771
.
12.
Tanaka
,
K.
, and
Sugeno
,
M.
, 1992, “
Stability Analysis and Design of Fuzzy Control Systems
,”
Fuzzy Sets Syst.
0165-0114,
45
, pp.
135
156
.
13.
Tanaka
,
K.
, 1995, “
Stability and Stabiliability of Fuzzy Neural Linear Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
3
, pp.
438
447
.
14.
Tanaka
,
K.
,
Ikeda
,
T.
, and
Wang
,
H. O.
, 1996, “
Robust Stabilization of a Class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stabilizability, H∞ Control Theory, and Linear Matrix Inequality
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
4
, pp.
1
13
.
15.
Wang
,
H. O.
,
Tanaka
,
K.
, and
Griffin
,
M. F.
, 1996, “
An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
4
, pp.
14
23
.
16.
Cao
,
S. G.
,
Ree
,
N. W.
, and
Feng
,
G.
, 1996, “
Quadratic Stability Analysis and Design of Continuous-Time Fuzzy Control Systems
,”
Int. J. Syst. Sci.
0020-7721,
27
, pp.
193
203
.
17.
Assawinchaichote
,
W.
, and
Nguang
,
S. K.
, 2004, “
H∞ Fuzzy Control Design for Nonlinear Singularly Perturbed Systems With Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
34
, pp.
579
588
.
18.
Taniguchi
,
T.
,
Tanaka
,
K.
,
Ohtake
,
H.
, and
Wang
,
H. W.
, 2001, “
Model Construction, Rule Reduction, and Robust Compensation for Generalized Form of Takagi-Sugeno Fuzzy Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
, pp.
525
538
.
19.
Chen
,
C. L.
,
Chen
,
P. C.
, and
Chen
,
C. K.
, 1993, “
Analysis and Design of Fuzzy Control System
,”
Fuzzy Sets Syst.
0165-0114,
57
, pp.
125
140
.
20.
Ma
,
X. J.
,
Sun
,
Z. Q.
, and
He
,
Y. Y.
, 1998, “
Analysis and Design of Fuzzy Controller and Fuzzy Observer
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
, pp.
41
51
.
21.
Chen
,
B. S.
,
Tseng
,
C. S.
, and
Uang
,
H. J.
, 2000, “
Mixed H2∕H∞ Fuzzy Output Feedback Control Design for Nonlinear Dynamic Systems: An LMI Approach
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
8
, pp.
249
265
.
22.
Nguang
,
S. K.
, and
Shi
,
P.
, 2000, “
Stabilization of a Class of Nonlinear Time-Delay Systems Using Fuzzy Models
,”
Proc. 39th IEEE Conf. on Decision and Control
, Sydney, Australia, pp.
4415
4419
.
23.
Nguang
,
S. K.
, and
Assawinchaichote
,
W.
, 2003, “
H∞ Filtering for Fuzzy Dynamical Systems with D-stability Constraints
,”
IEEE Trans. Circuits Syst.
0098-4094,
50
, pp.
1503
1508
.
24.
Assawinchaichote
,
W.
, and
Nguang
,
S. K.
, 2004, “
H∞ Filtering for Nonlinear Singularly Perturbed Systems with Pole Placement Constraints: An LMI Approach
,”
IEEE Trans. Signal Process.
1053-587X,
52
, pp.
1659
1667
.
25.
Teixeira
,
M.
, and
Zak
,
S. H.
, 1999, “
Stabilizing Controller Design for Uncertain Nonlinear Systems Using Fuzzy Models
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
133
142
.
26.
Zak
,
S. H.
, 1999, “
Stabilizing Fuzzy System Models Using Linear Controllers
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
236
240
.
27.
Tanaka
,
K.
, and
Wang
,
H. O.
, 2001,
Fuzzy Control Systems Design: A Linear Matrix Inequality Approach
,
Wiley
, New York.
28.
Ying
,
H.
, 1998, “
Sufficient Conditions on Uniform Approximation of Multivariate Functions by Takagi-Sugeno Fuzzy Systems With Linear Rule Consequent
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
28
, pp.
515
520
.
29.
Wang
,
H. W.
,
Li
,
J.
,
Niemann
,
D.
, and
Tanaka
,
K.
, 2000, “
T-S Fuzzy Model With Linear Rule Consequence and PDC Controller: A Universal Framework for Nonlinear Control Systems
,”
Proc. 9th IEEE Conf. Fuzzy Syst.
, San Antonio, TX, pp.
549
554
.
30.
Takagi
,
T.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
15
, pp.
116
132
.
31.
Wang
,
L. X.
, 1997,
A Course in Fuzzy Systems and Control
,
Prentice-Hall
, Englewood Cliffs, NJ.
32.
Nguang
,
S. K.
, and
Shi
,
P.
, 2003, “
H∞ Fuzzy Output Feedback Control Design for Nonlinear Systems: An LMI Approach
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
11
, pp.
331
340
.
33.
Nguang
,
S. K.
, 1996, “
Robust Nonlinear H∞ Output Feedback Control
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
1003
1008
.
34.
Nusse
,
H. E.
, and
Hommes
,
C. H.
, 1990, “
Resolution of Chaos With Application to a Modified Samuelson Model
,”
J. Econ. Dyn. Control
0165-1889,
14
, pp.
1
19
.
35.
Blair
, Jr.,
W. P.
, and
Sworder
,
D. D.
, 1975, “
Continuous-Time Regulation of a Class of Econometric Models
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
5
, pp.
341
346
.
You do not currently have access to this content.