This paper focuses on the analysis and synthesis of a robust stabilizing controller for linear discrete time systems with norm-bounded time varying uncertainties. Delay independent robust stability conditions are derived and two synthesis methods are presented. One method is to construct a robust memoryless state feedback control law from the solutions of linear matrix inequalities. The other method consists of designing robust observer-based output feedback controller. The results are expressed in termes of linear matrix inequalities. A comparison with ∕LDI tests is presented. Furthermore, numerical examples are given for illustration.
Issue Section:
Technical Briefs
1.
Su
, T. J.
, and Shyr
, W. J.
, 1994, “Robust D-Stability for Linear Uncertain Discrete Delay Systems
,” IEEE Trans. Autom. Control
0018-9286, 39
, pp. 425
–428
.2.
Hmamed
, A.
, and Tissir
, E.
, 1998, “Further Results on the Stability of Discrete Time Matrix Polynomials,”
Int. J. Syst. Sci.
0020-7721, 29
, pp. 819
–821
.3.
Hmamed
, A.
, and Tissir
, E.
, 1998, “D-stabilité des matrices polynomiales dans les systèmes discrets,”
in Proc. Conf. Méditérranèene sur l"Electronique et l"Automatique
, Marrakech, pp. 89
–92
.4.
Wu
, J. W.
, and Hong
, K. S.
, 1994, “Delay Independent Exponential Stability Criteria for Time Varying Discrete Delay Systems,”
IEEE Trans. Autom. Control
0018-9286, 49
, pp. 811
–814
.5.
Mori
, T.
, Fukuma
, N.
, and Kuwahara
, M.
, 1982, “Delay Independent Stability Criteria for Discrete Delay Systems,”
IEEE Trans. Autom. Control
0018-9286, 27
, pp. 964
–966
.6.
Lee
, C. H.
, Li
, T. H. S.
, and Kung
, F. C.
, 1992, “D-Stability Analysis for Discrete Systems With Time Delay
,” Syst. Control Lett.
0167-6911, 19
, pp. 213
–219
.7.
Lee
T. N.
, and Radovic
, U. L.
, 1987, “General Decentralized Stabilization of Large Scale Linear Continuous and Discrete Time Systems
,” Int. J. Control
0020-7179, 46
, pp. 2127
–2140
.8.
Boyd
, S.
, ELGhaoui
, L.
, Feron
, E.
, and Balakrishnan
, V.
, 1994, “Linear Matrix Inequalities in Systems and Control Theory
,” Stud. Appl. Math.
0022-2526, 15
.9.
Nesterov
, Y.
, and Nemirovsky
, A.
, 1994, “Interior Point Polynomial Methods in Convex Programming
,” Stud. Appl. Math.
0022-2526, 13
.10.
Vandenberghe
, L.
, and Boyd
, S.
, 1995, “Primal-Dual Potential Reduction Method for Problems Involving Matrix Inequalities
,” Math. Program.
0025-5610, 69
, pp. 205
–236
.11.
Wang
, Y.
, Xie
, L.
, and de Souza
, C. E.
, 1992, “Robust Control of a Class of Uncertain Nonlinear Systems
,” Syst. Control Lett.
0167-6911, 19
, pp. 139
–149
.12.
Horn
, R. A.
, and Johnson
, C. R.
, 1985, Matrix Analysis
, Cambridge Uni. Pr.
, Cambridge, UK
.13.
Packard
, A.
, and Doyle
, J. C.
, 1993, “The Complex Structured Singular Value
,” Automatica
0005-1098, 29
(1
), pp. 71
–109
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.