Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel’s bearings and the satellite structure. This paper provides simulation results and theory, which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation, and integrated power transfer and attitude control (IPAC), that are effective even with low stiffness active magnetic bearings (AMBs) and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multiple input–multiple output control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) large polar to transverse inertia ratios, which increases the stored energy density while causing the poles to become more speed dependent, and for (2) low bandwidth controllers shaped to suppress high frequency noise. Passive vibration dampers are designed to reduce the vibrations of flexible appendages of the satellite. Notch, low-pass, and bandpass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. Successful IPAC simulation results are presented with a 12% initial attitude error, large polar to transverse inertia ratio (IPIT), structural flexibility, and unbalance mass disturbance.

1.
Tsiotras
,
P.
,
Shen
,
H.
, and
Hall
,
C.
, 2001, “
Satellite Attitude Control for Power Tracking With Energy/Momentum Wheels
,”
J. Guid. Control Dyn.
0731-5090,
24
(
1
), pp.
23
34
.
2.
Kim
,
Y.
, 2003, “
Integrated Power and Attitude Control of a Rigid Satellite With Onboard Magnetic Bearing Suspended Rigid Flywheels
,” Ph.D. thesis, Texas A&M University, College Station, TX.
3.
Roes
,
J. B.
, 1961, “
An Electro-Mechanical Energy Storage System for Space Application
,”
Progress in Astronautics and Rocketry
,
Academic
,
New York
, pp.
613
622
.
4.
Sindlinger
,
R.
, 1976, “
Magnetic Bearing Momentum Wheels With Vernier Gimballing Capability for 3 Axis Active Attitude Control and Energy Storage
,”
Proceedings of the Seventh Symposium on Automatic Control in Space
,
Rottach-Egern, West Germany
, pp.
849
860
.
5.
Brunet
,
M.
, 1976, “
A New Technology for Three-Axis Stabilized Satellite—Active Magnetic Bearings
,”
Proceedings of the 27th International Astronautical Federation, International Astronautical Congress
,
Anaheim, CA
.
6.
Flatley
,
T. W.
, 1985, “
Tetrahedral Array of Reaction Wheels for Attitude Control and Energy Storage
,”
Proceedings of the 20th Intersociety Energy Conversion Engineering Conference
,
Warrendale, PA
, pp.
438
443
.
7.
Tsiotras
,
P.
, 1994, “
New Control Laws for the Attitude Stabilization of Rigid Bodies
,”
IFAC Symposium on Automatic Control in Aerospace
,
Palo Alto, CA
, pp.
316
321
.
8.
Schaub
,
H.
,
Robinett
,
R. D.
, and
Junkins
,
J. L.
, 1996, “
Global Stable Feedback Laws for Near-Minimum-Fuel and Near-Minimum-Time Pointing Maneuvers for a Landmark—Tracking Spacecraft
,”
J. Astronaut. Sci.
0021-9142,
44
(
4
), pp.
443
466
.
9.
Okada
,
Y.
,
Nagai
,
B.
, and
Shimane
,
T.
, 1992, “
Cross Feedback Stabilization of the Digitally Controlled Magnetic Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
54
59
.
10.
Ahrens
,
M.
,
Traxler
,
A.
,
Von Burg
,
P.
, and
Schweitzer
,
G.
, 1994, “
Design of a Magnetically Suspended Flywheel Energy Storage Device
,”
Fourth International Symposium on Magnetic Bearing
,
ETH Zurich
, pp.
553
558
.
11.
Na
,
U.
, 1999, “
Fault-Tolerant Control of Heteropolar Magnetic Bearings
,” Ph.D. thesis, Texas A&M University, College Station, TX.
12.
Herzog
,
R.
,
Buhler
,
P.
, and
Gahler
,
C.
, 1996, “
Unbalance Compensation Using Generalized Notch Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
5
), pp.
580
586
.
13.
Bhat
,
P. S.
, and
Bernstein
,
S. D.
, 1998, “
A Topological Obstruction to Global Asymptotic Stabilization of Rotational Motion and the Unwinding Phenomenon
,”
Proceedings of the American Control Conference
,
Philadelphia, PA
, pp.
2785
2789
.
14.
Parman
,
S.
, and
Koguchi
,
H.
, 1999, “
Controlling the Attitude Maneuvers of Flexible Spacecraft by Using Time-Optimal/Fuel-Efficient Shaped Inputs
,”
J. Sound Vib.
0022-460X,
221
(
4
), pp.
545
565
.
15.
Kim
,
Y.
,
Palazzolo
,
A.
,
Beach
,
R.
, and
Provenza
,
A.
, 2003, “
Interaction Dynamics Between a Satellite and Onboard Magnetically Suspended Flywheels
,”
First International Energy Conversion Engineering Conference
,
Portmouth, VA
, Paper No. AIAA 2003-6109.
16.
Ichihara
,
T.
,
Matsunaga
,
K.
,
Kita
,
M.
,
Harabayashi
,
I.
,
Hirose
,
M.
,
Yoshi
,
K.
,
Kurihara
,
K.
,
Saito
,
O.
,
Murakami
,
M.
,
Takabayashi
,
H.
,
Natsumeda
,
M.
, and
Koshizuka
,
N.
, 2005, “
Fabrication and Evaluation of Superconducting Magnetic Bearing for 10 KW H-class Flywheel Energy Storage System
,”
Physica C
0921-4534,
426
(
1
), pp.
752
758
.
17.
Sotelo
,
G. G.
, and
Ferreira
,
A. C.
, 2005, “
Halbach Array Superconducting Magnetic Bearing for a Flywheel Energy Storage System
,”
IEEE Trans. Appl. Supercond.
1051-8223,
15
(
2
), pp.
2253
2256
.
18.
Sawada
,
H.
,
Hashimoto
,
T.
, and
Ninomiya
,
K.
, 2001, “
High-Stability Attitude Control of Satellite by Magnetic Bearing Wheels
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
0549-3811,
44
(
145
), pp.
133
141
.
19.
Robinson
,
A. A.
, 1982, “
A Lightweight, Low-Cost, Magnetic-Bearing Reaction Wheel for Satellite Attitude-Control Applications
,”
ESA J. European Space Agency
,
6
(
4
), pp.
397
406
.
20.
Jayaraman
,
C. P.
,
Kirk
,
J. A.
,
Anand
,
D. K.
, and
Anjanappa
,
M.
, 1991, “
Rotor Dynamics of Flywheel Energy Storage Systems
,”
ASME J. Sol. Energy Eng.
0199-6231,
113
(
1
), pp.
11
18
.
21.
Kirk
,
J. A.
, and
Anand
,
D. K.
, 1998, “
Satellite Power Using a Magnetically Suspended Flywheel Stack
,”
J. Power Sources
0378-7753,
22
(
3–4
), pp.
301
311
.
22.
Kirk
,
J. A.
, 1997, “
Flywheel Energy—Storage. 1. Basic Concepts
,”
Int. J. Mech. Sci.
0020-7403,
19
(
4
), pp.
223
231
.
23.
Kirk
,
J. A.
, and
Studer
,
P. A.
, 1997, “
Flywheel Energy—Storage. 2. Magnetically Suspended Super Flywheel
,”
Int. J. Mech. Sci.
0020-7403,
19
(
4
), pp.
223
245
.
24.
Kenny
,
B. H.
,
Kascak
,
P. E.
,
Jansen
,
R.
,
Denver
,
T.
, and
Santiago
,
T.
, 2005, “
Control of a High-Speed Flywheel System for Energy Storage in Space Applications
,”
IEEE Trans. Ind. Appl.
0093-9994,
41
(
4
), pp.
1029
1038
.
25.
Christopher
,
D. A.
, and
Beach
,
R.
, 1998, “
Flywheel Technology Development Program for Aerospace Applications
,”
IEEE Aerosp. Electron. Syst. Mag.
0885-8985,
13
(
6
), pp.
9
14
.
26.
Junkins
,
J. L.
, and
Kim
,
Y.
, 1993,
Introduction to Dynamics and Control of Flexible Structures
(
AIAA Education Series
),
AIAA
,
Washington, DC
, Chap. 3.5.
27.
Hall
,
C.
,
Tsiotras
,
P.
, and
Shen
,
H.
, 1998, “
Tracking Rigid Body Motion Using Thrusters and Momentum Wheels
,” AIAA Paper No. AIAA 98-4471.
28.
Tsiotras
,
P.
, 1996, “
Stabilization and Optimality Results for the Attitude Control Problem
,”
J. Guid. Control Dyn.
0731-5090,
19
(
4
), pp.
772
779
.
29.
Meeker
,
D. C.
,
Maslen
,
E. H.
, and
Noh
,
M. D.
, 1996, “
An Augmented Circuit Model for Magnetic Bearings Including Eddy Currents, Fringing, and Leakage
,”
IEEE Trans. Magn.
0018-9464,
32
(
4
), pp.
3219
3227
.
30.
Rao
,
S. S.
, 1995,
Mechanical Vibrations
,
Addison-Wesley
,
Reading, MA
, Chap. 3.6.
31.
Thomson
,
W. T.
, 1998,
Theory of Vibration With Applications
, 4th ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
188
189
.
You do not currently have access to this content.