This paper presents the design, model identification, and control of a parallel-kinematic XYZ nanopositioning stage for general nanomanipulation and nanomanufacturing applications. The stage has a low degree-of-freedom monolithic parallel-kinematic mechanism featuring single-axis flexure hinges. The stage is driven by piezoelectric actuators, and its displacement is detected by capacitance gauges. The control loop is closed at the end effector instead of at each joint, so as to avoid calibration difficulties and guarantee high positioning accuracy. This design has strongly coupled dynamics with each actuator input producing in multiaxis motions. The nanopositioner is modeled as a multiple input and multiple output (MIMO) system, where the control design forms an important constituent in view of the strongly coupled dynamics. The dynamics that model the MIMO plant is identified by frequency domain and time-domain identification methods. The control design based on modern robust control theory that gives a high bandwidth closed loop nanopositioning system, which is robust to physical model uncertainties arising from flexure-based mechanisms, is presented. The bandwidth, resolution, and repeatability are characterized experimentally, which demonstrate the effectiveness of the robust control approach.

1.
Chen
,
H. T. H.
,
Ng
,
W.
, and
Engelstad
,
R. L.
, 1992, “
Finite Element Analysis of a Scanning X-Ray Microscope Micropositioning Stage
,”
Rev. Sci. Instrum.
0034-6748,
63
(
1
), pp.
591
594
.
2.
Yang
,
R.
,
Jouaneh
,
M.
, and
Schweizer
,
R.
, 1996, “
Design and Characterization of a Low-Profile Micropositioning Stage
,”
Precis. Eng.
0141-6359,
18
, pp.
20
29
.
3.
Sugihara
,
K.
,
Mori
,
I.
,
Tojo
,
T.
,
Ito
,
C.
,
Tabata
,
M.
, and
Shinozaki
,
T.
, 1989, “
Piezoelectrically Driven XYθ Table for Submicron Lithography Systems
,”
Rev. Sci. Instrum.
0034-6748,
60
(
9
), pp.
3024
3029
.
4.
Castaneda
,
A.
,
Apatiga
,
L. M.
,
Velazquez
,
R.
, and
Castano
,
V. M.
, 2001, “
Micropositioning Device for Automatic Alignment of Substrates for Industrial-Scale Thin Films Deposition
,”
Assem. Autom.
0144-5154,
21
(
4
), pp.
336
340
.
5.
Campos Rubio
,
J. C.
,
Dubuch
,
J. G.
, and
Vieira Porto
,
A.
, 1997, “
Micropositioning Device Using Solid State Actuators for Diamond Turning Machines: A Preliminary Experiment
,”
Proc. SPIE
0277-786X,
3044
, pp.
317
326
.
6.
Muthuswamy
,
J.
,
Salas
,
D.
, and
Okandan
,
M.
, 2002, “
A Chronic Micropositioning System for Neurophysiology
,”
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
, Vol.
3
, pp.
2115
2116
.
7.
Stilson
,
S.
,
McClellan
,
A.
, and
Devasia
,
S.
, 2001, “
High-Speed Solution Switching Using Piezo-Based Micropositioning Stages
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
7
), pp.
806
814
.
8.
Smith
,
A. R.
,
Gwo
,
S.
, and
Shih
,
C. K.
, 1994, “
A New High-Resolution Two-Dimensional Micropositioning Device for Scanning Probe Microscopy Applications
,”
Rev. Sci. Instrum.
0034-6748,
65
(
10
), pp.
3216
3219
.
9.
Li
,
Y.
, and
Xu
,
Q.
, 2006, “
A Novel Design and Analysis of a 2-DOF Compliant Parallel Micromanipulator for Nano Manipulation
,”
IEEE. Trans. Autom. Sci. Eng.
1545-5955,
3
(
3
), pp.
248
253
10.
Lin
,
L.
, and
Tsay
,
M.
, 2000, “
Modeling and Control of Micropositioning Systems Using Stewart Platforms
,”
J. Rob. Syst.
0741-2223,
17
(
1
), pp.
17
52
.
11.
Yi
,
B.
,
Na
,
H.
,
Chung
,
G. B.
,
Kim
,
W. K.
, and
Suh
,
I. H.
, 2002, “
Design and Experiment of a 3DOF Parallel Micro-Mechanism Utilizing Flexure Hinges
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1167
1172
.
12.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
, 2007, “
Design, Analysis, Fabrication and Testing of a Piezo-Driven Parallel-Kinematics Micropositioning XY Stage
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
, pp.
946
961
.
13.
Chen
,
S.-C.
, and
Culpepper
,
M. L.
, 2006, “
Design of a Six-Axis Micro-Scale Nanopositioner MicroHexFlex
,”
Precis. Eng.
0141-6359,
30
(
3
), pp.
314
324
.
14.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
, 2008, “
A Novel Parallel-Kinematics Mechanism for Integrated, Multi-Axis Nanopositioning. Part 1: Kinematics and Design for Fabrication
,”
Precis. Eng.
0141-6359,
32
(
1
), pp.
7
19
.
15.
Dong
,
J.
,
Yao
,
Q.
, and
Ferreira
,
P. M.
, 2008, “
A Novel Parallel-Kinematics Mechanism for Integrated, Multi-Axis Nanopositioning. Part 2: Dynamics, Control and Performance Analysis
,”
Precis. Eng.
0141-6359,
32
(
1
), pp.
20
33
.
16.
Salapaka
,
S.
,
Sebastian
,
A.
,
Cleveland
,
J. P.
, and
Salapaka
,
M. V.
, 2002, “
High Bandwidth Nano-Positioner: A Robust Control Approach
,”
Rev. Sci. Instrum.
0034-6748,
73
(
9
),
3232
3241
.
17.
Sebastian
,
A.
, and
Salapaka
,
S.
, 2005, “
Design Methodologies for Robust Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
6
), pp.
868
876
.
18.
Schitter
,
G.
,
Menold
,
P.
,
Knapp
,
H. F.
,
Allgower
,
F.
, and
Stemmer
,
A.
, 2001, “
High Performance Feedback for Fast Scanning Atomic Force Microscopes
,”
Rev. Sci. Instrum.
0034-6748,
72
(
8
), pp.
3320
3327
.
19.
Schitter
,
G.
,
Allgower
,
F.
, and
Stemmer
,
A.
, 2004, “
A New Control Strategy or High Speed Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
15
(
1
), pp.
108
114
.
21.
Soderstrom
,
T.
, and
Stoica
,
P.
, 1988,
System Identification
,
Prentice Hall
,
New York
.
22.
System Identification Tool Box Manual, The MathWorks Inc.
23.
Koren
,
Y.
, 1980, “
Cross-coupled Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
102
(
4
), pp.
265
272
.
24.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 2005,
Multivariable Feedback Control: Analysis and Design
(
Wiley
,
New York
).
You do not currently have access to this content.