We consider an experimental system consisting of a pendulum, which is free to rotate 360deg, attached to a cart. The cart can move in one dimension. We study the effect of friction on the design and performance of a feedback controller, a linear quadratic regulator, that aims to stabilize the pendulum in the upright position. We show that a controller designed using a simple viscous friction model has poor performance—small amplitude oscillations occur when the controller is implemented. We consider various models for stick slip friction between the cart and the track and measure the friction parameters experimentally. We give strong evidence that stick slip friction is the source of the small amplitude oscillations. A controller designed using a stick slip friction model stabilizes the system, and the small amplitude oscillations are eliminated.

1.
Morris
,
K. A.
, and
Juang
,
J. N.
, 1993, “
Dissipative Controller Design for Second-Order Dynamic Systems
,”
Control of Flexible Structures
,
K. A.
Morris
, ed.,
AMS
,
Providence, RI
, pp.
71
90
.
2.
Eltohamy
,
K. G.
, and
Kuo
,
C. Y.
, 1997, “
Real Time Stabilisation of a Triple Link Inverted Pendulum Using Single Control Input
,”
IEE Proc.: Control Theory Appl.
1350-2379,
144
(
5
), pp.
498
504
.
3.
Olsson
,
H.
, and
Åström
,
K. J.
, 2001, “
Friction Generated Limit Cycles
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
4
), pp.
629
636
.
4.
Hirschorn
,
R. M.
, and
Miller
,
G.
, 1999, “
Control of Nonlinear Systems With Friction
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
5
), pp.
588
595
.
5.
Kollár
,
L. E.
,
Stépán
,
G.
, and
Hogan
,
S. J.
, 2000, “
Sampling Delay and Backlash in Balancing Systems
,”
Period. Polytech., Mech. Eng.-Masinostr.
0324-6051,
44
(
1
), pp.
77
84
(see www.pp.bme.hu/mewww.pp.bme.hu/me).
6.
Bugeja
,
M.
, 2003, “
Non-Linear Swing-Up and Stabilizing Control of an Inverted Pendulum System
,”
Proceedings of the IEEE Region 8 EUROCON 2003: Computer as a Tool
,
B.
Zajc
and
M.
Tkalčič
, eds.,
IEEE
,
Piscataway, NJ
, Vol.
2
, pp.
437
441
.
7.
Medrano-Cerda
,
G. A.
, 1999, “
Robust Computer Control of an Inverted Pendulum
,”
IEEE Control Syst. Mag.
0272-1708,
19
(
3
), pp.
58
67
.
8.
Fang
,
L.
,
Chen
,
W. J.
, and
Cheang
,
S. U.
, 2001, “
Friction Compensation for a Double Inverted Pendulum
,”
Proceedings of the 2001 IEEE International Conference on Control Applications
, pp.
908
913
.
9.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas de Wit
,
C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
10.
Chang
,
L.-H.
, and
Lee
,
A.-C.
, 2007, “
Design of Nonlinear Controller for Bi-axial Inverted Pendulum System
,”
IET Control Theory & Applications
,
1
(
4
), pp.
979
986
.
11.
van der Linden
,
G.-W.
, and
Lambrechts
,
P. F.
, 1993, “
H∞ Control of an Experimental Inverted Pendulum With Dry Friction
,”
IEEE Control Syst. Mag.
0272-1708,
13
(
4
), pp.
44
50
.
12.
Neimann
,
H.
, and
Poulsen
,
J. K.
, 2005, “
Design and Analysis of Controllers for a Double Inverted Pendulum
,”
ISA Trans.
0019-0578,
44
, pp.
145
163
.
13.
Yoshida
,
K.
, 1999, “
Swing-Up Control of an Inverted Pendulum by Energy-Based Methods
,”
Proceedings of the 1999 American Control Conference
, Vol.
6
, pp.
4045
4047
.
14.
Jung
,
S.
, and
Wen
,
J. T.
, 2004, “
Nonlinear Model Predictive Control for the Swing-Up of a Rotary Inverted Pendulum
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
3
), pp.
666
671
.
15.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Åström
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
16.
Landry
,
M.
,
Campbell
,
S. A.
,
Morris
,
K. A.
, and
Aguilar
,
C.
, 2005, “
Dynamics of an Inverted Pendulum With Delayed Feedback Control
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
4
(
2
), pp.
333
351
.
17.
Stribeck
,
R.
, 1902, “
Die wesentlichen eigenschaften der gleit-und rollenlage (The Key Qualities of Sliding and Roller Bearings)
,”
Zeitschrift des Vereines Deutscher Ingenieure
,
46
, pp.
1342
1348
.
18.
Armstrong-Hélouvry
,
B.
, 1991,
Control of Machines With Friction
,
Kluwer
,
Boston
.
19.
Campbell
,
S. A.
,
Crawford
,
S.
, and
Morris
,
K. A.
, 2007, “
Time Delay and Feedback Control of an Inverted Pendulum With Stick Slip Friction
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences (DECT2007)
.
20.
Haessig
,
D. A.
, and
Friedland
,
B.
, 1991, “
On the Modeling and Simulation of Friction
.”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
3
), pp.
354
362
.
21.
Morris
,
K. A.
, 2001,
An Introduction to Feedback Controller Design
,
Harcourt∕Academic
,
New York
.
22.
Golubitsky
,
M.
,
Stewart
,
I.
, and
Schaeffer
,
D. G.
, 1988,
Singularities and Groups in Bifurcation Theory
,
Springer
,
New York
, Vol.
2
.
23.
Kolmanovskii
,
V.
, and
Nosov
,
V.
, 1986,
Stability of Functional Differential Equations, Mathematics in Science and Engineering
, Vol.
180
,
Academic
,
London, England
.
24.
Kuznetsov
,
Y. A.
,
Rinaldi
,
S.
, and
Gragnani
,
A.
, 2003, “
One-Parameter Bifurcations in Planar Filippov Systems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
13
(
8
), pp.
2157
2188
.
You do not currently have access to this content.