In this paper, we suggest how to enlarge the maximum controllable region for unstable linear systems with mixed control actions. Using the impulsive action as an alternating control input, it is shown how the collaborative control inputs (bang-bang and impulsive action) work to augment the controllable region of unstable second order systems. However, the weakness resides in the sensitivity to model uncertainty and the time-consuming work to construct the switch curves (bang-bang switch curve and impulse firing curve). We suggest an efficient way to approximate the switch curves. It overcomes the shortcomings from the use of original switch curves, which are constructed through time backward computation. Simulation results show how the approximate switch curves can be used to determine the optimal control values for an augmented maximum controllable region.

1.
Hu
,
T.
, and
Lin
,
Z.
, 2002,
Control Systems With Actuator Saturations
,
Birkhauser
,
Boston, MA
.
2.
Hu
,
T.
, and
Lin
,
Z.
, 2002, “
On Semiglobal Stabilizability of Antistable System by Saturated Linear Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
1193
1198
.
3.
Babitsky
,
V. I.
, 1999,
Dynamics of Vibro-Impact Systems
,
Springer
,
New York
.
4.
Grizzle
,
J. W.
,
Abba
,
G.
, and
Plestan
,
F.
, 2001, “
Asymptotically Stable Walking for Biped Robots: Analysis Via Systems With Impulse Effects
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
51
64
.
5.
Raghunathan
,
S.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
, 1998, “
Impulse Noise and Its Control
,”
Prog. Aerosp. Sci.
0376-0421,
34
, pp.
1
44
.
6.
Shaiju
,
A. J.
, and
Dharmatti
,
S.
, 2005, “
Differential Games With Continuous, Switching and Impulse Controls
,”
Nonlinear Anal.
,
63
, pp.
23
41
. 0362-546X
7.
Schmaedeke
,
W. W.
, 1965, “
Optimal Control Theory for Nonlinear Vector Differential Equations Containing Measures
,”
SIAM J. Control
0036-1402,
3
, pp.
231
281
.
8.
Miller
,
B. M.
, 1996, “
The Generalized Solutions of Nonlinear Optimization Problems With Impulse Control
,”
SIAM J. Control Optim.
0363-0129,
34
, pp.
1420
1439
.
9.
Silva
,
G. N.
, and
Vinter
,
R. B.
, 1997, “
Necessary Conditions for Optimal Impulsive Control Problems
,”
SIAM J. Control Optim.
0363-0129,
35
, pp.
1829
1845
.
10.
Bressan
,
A.
, and
Rampazzo
,
F.
, 1994, “
Impulsive Control Systems Without Commutativity Assumptions
,”
J. Optim. Theory Appl.
0022-3239,
81
, pp.
435
457
.
11.
Ivanov
,
A. P.
, 2001, “
The Stability of Mechanical Systems Subjected to Impulsive Actions
,”
J. Appl. Math. Mech.
0021-8928,
65
, pp.
617
629
.
12.
Wolenski
,
P. R.
, 2002, “
Invariance Properties for Impulse Systems
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
1113
1116
.
13.
Luo
,
J. C.
, and
Lee
,
E. B.
, 1999, “
Mixed Disturbance Action for Stabilized Control Systems (Necessary Conditions)
,”
Proceedings of the IEEE American Control Conference
, pp.
2563
2567
.
14.
You
,
K. H.
,
Luo
,
J. C.
, and
Lee
,
J. H.
, 2003, “
Mixed Control Actions for Unstable Linear Systems
,”
IEICE Trans. Fundamentals
0916-8508,”
E86-A
, pp.
2317
2324
.
15.
Lee
,
E. B.
, and
Markus
,
L.
, 1967,
Foundations of Optimal Control Theory
,
Wiley
,
New York
.
You do not currently have access to this content.