The rotating internal damping or nonconservative circulatory force in a rotor shaft system causes instability beyond a certain threshold rotor spinning speed. However, if the source loading of the drive is considered, then the rotor spin is entrained at the stability threshold and a stable whirl orbit is observed about the unstable equilibrium. As we move toward the use of more and more lightweight rotor dynamic components such as the shaft and the motor, overlooking this frequency entrainment phenomenon while sizing the actuator in the design stage may lead to undesirable performance. This applies to many emerging areas of strategic importance such as in vivo medical robots where flexible probes are used and space robotics applications involving rotating tools. We analyze this spin entrainment phenomenon in a distributed parameter model of a spinning shaft, which is driven by a nonideal dc motor. A drive whose dynamics is influenced by the dynamics of the driven system is called a nonideal source and the whole system is referred to as a nonideal system. In particular, we show the advantages of representing such nonideal drive-system interactions in a modular manner through bond graph modeling as compared to standard equation models where the energetic couplings between dynamic variables are not explicitly shown. The developed modular bond graph model can be extended to include rotor disks and bearings placed at different locations on the shaft. Moreover, the power conserving property of the junction structure of the bond graph model is exploited to derive the source loading expressions, which are then used to analytically derive the steady-state spinning frequency and whirl orbit amplitude as functions of the drive and the rotor system parameters. We show that the higher transverse modes may become unstable before the lower ones under certain parametric conditions. The shaft spinning speed is entrained at the lowest stability threshold among all transverse modes. The bond graph model is used for numerical simulation of the system to validate the steady-state results obtained from the theoretical study.

1.
Sommerfeld
,
A.
, 1902, “
Beiträge Zum Dynamischen Ausbau Der Festigkeitslehe
,”
Phys. Z.
0369-982X,
3
, pp.
266
286
.
2.
Timoshenko
,
S.
, 1961,
Vibration Problems in Engineering
,
Van Nostrand
,
Princeton, NJ
.
3.
Kononenko
,
V. O.
, 1964,
Vibrating Systems With Limited Excitation
,
Nauka
,
Moscow, Russia
.
4.
Blekhman
,
I. I.
, 2000,
Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications
,
World Scientific
,
Singapore
.
5.
Alifov
,
A. A.
, and
Frolov
,
K. V.
, 1990,
Interaction of Non-Linear Oscillatory Systems With Energy Sources
,
Taylor & Francis
,
London, UK
.
6.
Nayfeh
,
A.
, and
Mook
,
D.
, 1979,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
7.
Eckert
,
M.
, 1996, “
The Sommerfeld Effect: Theory and History of a Remarkable Resonance Phenomenon
,”
Eur. J. Phys.
0143-0807,
17
(
5
), pp.
285
289
.
8.
Ryzhik
,
A.
,
Amer
,
T.
,
Duckstein
,
H.
, and
Sperling
,
L.
, 2001, “
Zum Sommerfeldeffect beim selbsttätigen Auswuchten in einer Ebene
,”
Technische Mechanik
0232-3869,
21
(
4
), pp.
297
312
.
9.
Felix
,
J. L. P.
, and
Balthazar
,
J. M.
, 2009, “
Comments on a Nonlinear and Nonideal Electromechanical Damping Vibration Absorber, Sommerfeld Effect, and Energy Transfer
,”
Nonlinear Dyn.
0924-090X,
55
(
1–2
), pp.
1
11
.
10.
Bolla
,
M. R.
,
Balthazar
,
J. M.
,
Felix
,
J. L. P.
, and
Mook
,
D. T.
, 2007, “
On an Approximate Analytical Solution to a Nonlinear Vibrating Problem, Excited by a Nonideal Motor
,”
Nonlinear Dyn.
0924-090X,
50
(
4
), pp.
841
847
.
11.
Balthazar
,
J. M.
,
Mook
,
D. T.
,
Weber
,
H. I.
,
Brasil
,
R. M. L. R. F.
,
Fenili
,
A.
,
Belato
,
D.
, and
Felix
,
J. L. P.
, 2003, “
An Overview on Non-Ideal Vibrations
,”
Meccanica
0025-6455,
38
, pp.
613
621
.
12.
Balthazar
,
J. M.
,
Mook
,
D. T.
,
Brasil
,
R. M. L. R. F.
,
Fenili
,
A.
,
Belato
,
D.
,
Felix
,
J. L. P.
, and
Weber
,
H. I.
, 2002, “
Recent Results on Vibrating Problems With Limited Power Supply
,”
Meccanica
0025-6455,
330
(
7
), pp.
1
9
.
13.
Dimentberg
,
M. F.
,
McGovern
,
L.
,
Norton
,
R. L.
,
Chapdelaine
,
J.
, and
Harrison
,
R.
, 1997, “
Dynamics of an Unbalanced Shaft Interacting With a Limited Power Supply
,”
Nonlinear Dyn.
0924-090X,
13
, pp.
171
187
.
14.
Zukovic
,
M.
, and
Cveticanin
,
L.
, 2007, “
Chaotic Responses in a Stable Duffing System of Non-Ideal Type
,”
J. Vib. Control
1077-5463,
13
(
6
), pp.
751
767
.
15.
Evan-Iwanowski
,
R. M.
, 1976,
Resonance Oscillators in Mechanical Systems
,
Elsevier
,
London, UK
.
16.
Olver
,
P. J.
, 1995,
Equivalence, Invariants, and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
17.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
, 2006,
System Dynamics: Modeling and Simulation of Mechatronic Systems
,
Wiley
,
New York
.
18.
Mukherjee
,
A.
,
Karmakar
,
R.
, and
Samantaray
,
A. K.
, 2006,
Bond Graph in Modeling, Simulation, and Fault Identification
,
CRC
,
Boca Raton, FL
.
19.
Borutzky
,
W.
, 2004,
Bond Graphs—A Methodology for Modelling Multidisciplinary Dynamic Systems
,
SCS
,
San Diego, CA
.
20.
Samantaray
,
A. K.
, and
Ould Bouamama
,
B.
, 2008,
Model-Based Process Supervision: A Bond Graph Approach
,
Springer
,
London, UK
.
21.
Dauphin-Tanguy
,
G.
, 2000,
Les Bond Graphs
,
Hermes Science Europe
,
Paris, France
.
22.
Samantaray
,
A. K.
,
Mukherjee
,
A.
, and
Bhattacharyya
,
R.
, 2006, “
Some Studies on Rotors With Polynomial Type Nonlinear External and Internal Damping
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
1007
1015
.
23.
Rastogi
,
V.
, 2005, “
Extension of Lagrangian–Hamiltonian Mechanics for Finite Systems
,” Ph.D. thesis, IIT Kharagpur, India.
24.
Mukherjee
,
A.
,
Rastogi
,
V.
, and
Dasgupta
,
A.
, 2009, “
Extension of Lagrangian–Hamiltonian Mechanics for Continuous Systems—Investigation of Dynamics of a One-Dimensional Internally Damped Rotor Driven Through a Dissipative Coupling
,”
Nonlinear Dyn.
0924-090X,
58
(
1–2
), pp.
107
127
.
25.
Genin
,
J.
, 1966, “
Effect of Nonlinear Material Damping on Whirling Shafts
,”
Flow, Turbul. Combust.
1386-6184,
15
(
1
), pp.
1
11
.
26.
Genin
,
J.
, and
Maybee
,
J. S.
, 1969, “
Stability in Three Dimensional Whirling Problem
,”
Int. J. Non-Linear Mech.
0020-7462,
4
, pp.
205
215
.
27.
Genin
,
J.
, and
Maybee
,
J. S.
, 1970, “
External and Material Damped Three Dimensional Rotor System
,”
Int. J. Non-Linear Mech.
0020-7462,
5
, pp.
281
291
.
28.
Margolis
,
D. L.
, 1978, “
Bond Graphs and the Exploitation of Power Conserving Transformations
,”
Comput. Programs Biomed.
0010-468X,
8
(
3–4
), pp.
165
170
.
29.
Karnopp
,
D.
, 1969, “
Power-Conserving Transformations: Physical Interpretations and Applications Using Bond Graphs
,”
J. Franklin Inst.
0016-0032,
288
(
3
), pp.
175
201
.
30.
Pedersen
,
P. T.
, 1973, “
On Self-Excited Whirl of Rotors
,”
Ing.-Arch.
0020-1154,
42
, pp.
267
284
.
31.
Chang
,
C. O.
, and
Cheng
,
J. W.
, 1993, “
Non-Linear Dynamics and Instability of a Rotating Shaft-Disk System
,”
J. Sound Vib.
0022-460X,
160
(
3
), pp.
433
454
.
32.
Ngwompo
,
R. F.
, and
Scavarda
,
S.
, 1999, “
Dimensioning Problems in System Design Using Bicausal Bond Graphs
,”
Simulation Practice and Theory
,
7
(
5–6
), pp.
577
587
.
33.
Gawthrop
,
P. J.
, 2000, “
Physical Interpretation of Inverse Dynamics Using Bicausal Bond Graphs
,”
J. Franklin Inst.
0016-0032,
337
(
6
), pp.
743
769
.
34.
Merzouki
,
R.
,
Medjaher
,
K.
,
Djeziri
,
M. A.
, and
Ould-Bouamama
,
B.
, 2007, “
Backlash Fault Detection in Mechatronic System
,”
Mechatronics
0957-4158,
17
(
6
), pp.
299
310
.
35.
Ben-Tal
,
A.
, 2002, “
Symmetry Restoration in a Class of Forced Oscillators
,”
Physica D
0167-2789,
171
, pp.
236
248
.
36.
Samantaray
,
A. K.
,
Dasgupta
,
S. S.
, and
Bhattacharyya
,
R.
, 2010, “
Sommerfeld Effect in Rotationally Symmetric Planar Dynamical Systems
,”
Int. J. Eng. Sci.
0020-7225,
48
(
1
), pp.
21
36
.
37.
Baltanás
,
J. P.
,
Trueba
,
J. L.
, and
Sanjuán
,
M. A. F.
, 2001, “
Energy Dissipation in a Nonlinearly Damped Duffing Oscillator
,”
Physica D
0167-2789,
159
, pp.
22
34
.
38.
Samantaray
,
A. K.
, 2008, “
A Note on Internal Damping Induced Self-Excited Vibration in a Rotor by Considering Source Loading of a DC Motor Drive
,”
Int. J. Non-Linear Mech.
0020-7462,
43
(
9
), pp.
1012
1017
.
39.
Samantaray
,
A. K.
, 2009, “
Steady State Dynamics of a Non-Ideal Rotor With Internal Damping and Gyroscopic Effects
,”
Nonlinear Dyn.
0924-090X,
56
(
4
), pp.
443
451
.
40.
Samantaray
,
A. K.
, 2009, “
On the Non-Linear Phenomena Due to Source Loading in Rotor-Motor Systems
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
223
(
4
), pp.
809
818
.
41.
Sugiyama
,
Y.
, and
Langthjem
,
M. A.
, 2007, “
Physical Mechanism of the Destabilizing Effect of Damping in Continuous Non-Conservative Dissipative Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
132
145
.
42.
Samantaray
,
A. K.
,
Bhattacharyya
,
R.
, and
Mukherjee
,
A.
, 2008, “
On the Stability of Crandall Gyropendulum
,”
Phys. Lett. A
0375-9601,
372
, pp.
238
243
.
43.
Samantaray
,
A. K.
,
Bhattacharyya
,
R.
, and
Mukherjee
,
A.
, 2006, “
An Investigation Into the Physics Behind the Stabilizing Effects of Two-Phase Lubricants in Journal Bearings
,”
J. Vib. Control
1077-5463,
12
(
4
), pp.
425
442
.
44.
Inman
,
D. J.
, 1986,
Vibration With Control, Measurement, and Stability
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
45.
Parszewski
,
Z. A.
,
Krodkiewski
,
J. M.
, and
Skoraczynski
,
J.
, 1988, “
Stability Assessment of Machine Systems Described by Receptance
,”
J. Sound Vib.
0022-460X,
120
(
3
), pp.
527
538
.
46.
Crandall
,
S. H.
, 1995, “
The Effect of Damping on the Stability of Gyroscopic Pendulums
,”
Z. Angew. Math. Phys.
0044-2275,
46
, pp.
S761
S780
.
47.
Bou-Rabee
,
N. M.
,
Marsden
,
J. E.
, and
Romero
,
L. A.
, 2004, “
Tippe Top Inversion as a Dissipation-Induced Instability
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
3
(
3
), pp.
352
377
.
48.
Krechetnikov
,
R.
, and
Marsden
,
J. E.
, 2006, “
On Destabilizing Effects of Two Fundamental Non-Conservative Forces
,”
Physica D
0167-2789,
214
, pp.
25
32
.
49.
Bhattacharyya
,
R.
,
Mukherjee
,
A.
, and
Samantaray
,
A. K.
, 2003, “
Harmonic Oscillations of Non-Conservative, Asymmetric, Two-Degree-of-Freedom Systems
,”
J. Sound Vib.
0022-460X,
264
, pp.
973
980
.
50.
Kirillov
,
O. N.
, 2007, “
Destabilization Paradox Due to Breaking the Hamiltonian and Reversible Symmetry
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
71
87
.
51.
Filippov
,
A. P.
, 1971,
Vibrations of Mechanical Systems
,
National Lending Library for Science and Technology
,
Boston Spa, Yorkshire, UK
.
52.
Umesh Rai
,
B.
, and
Umanand
,
L.
, 2008, “
Bond Graph Model of Doubly Fed Three Phase Induction Motor Using the Axis Rotator Element for Frame Transformation
,”
Simulation Modelling Practice and Theory
,
16
(
10
), pp.
1704
1712
.
53.
Mukherjee
,
A.
,
Karmakar
,
R.
, and
Samantaray
,
A. K.
, 1999, “
Modelling of Basic Induction Motors and Source Loading in Rotor-Motor Systems With Regenerative Force Field
,”
Simulation Practice and Theory
,
7
(
5–6
), pp.
563
576
.
54.
Kim
,
J.
, and
Bryant
,
M. D.
, 2000, “
Bond Graph Model of a Squirrel Cage Induction Motor With Direct Physical Correspondence
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
461
469
.
55.
Karnopp
,
D.
, 1991, “
State Functions and Bond Graph Dynamic Models for Rotary, Multi-Winding Electrical Machines
,”
J. Franklin Inst.
0016-0032,
328
(
1
), pp.
45
54
.
56.
Dasgupta
,
K.
,
Mukherjee
,
A.
, and
Maiti
,
R.
, 1996, “
Modeling and Dynamics of Epitrochoid Generated Orbital Rotary Piston LSHT Hydraulic Motor: A Bondgraph Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
(
3
), pp.
415
420
.
57.
Halder
,
B.
,
Mukherjee
,
A.
, and
Karmakar
,
R.
, 1990, “
Theoretical and Experimental Studies on Squeeze Film Stabilizers for Flexible Rotor-Bearing Systems Using Newtonian and Viscoelastic Lubricants
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
112
(
4
), pp.
473
482
. 0002-7820
58.
Yeh
,
T. -J.
, and
Youcef-Toumi
,
K.
, 1994, “
Design and Control Integration for Magnetic Bearing Systems. Part I—Modelling and Performance Limitation
,” ASME Dyn. Syst. Control Div. Publication DSC 55-2, pp.
939
943
.
59.
Bryant
,
M. D.
, and
Lee
,
S.
, 2004, “
Resistive Field Bond Graph Models for Hydrodynamically Lubricated Bearings
,”
Proc. IMechE Part I: Journal of Systems and Control Engineering
,
218
(
8
), pp.
645
654
.
You do not currently have access to this content.