In recent years, many applications in precision engineering require a careful isolation of the instrument from the vibration sources by adopting active vibration isolation system to achieve a very low remaining vibration level, especially for the very low frequency under 10 Hz vibration signals. This paper presents a 3-PUPU dual parallel manipulator for both rough positioning and active vibration isolation in a wide-range workspace based on our previous research experiences in the systematical modeling and study of parallel robots. The manipulator is designed as a kind of macro/micro hybrid robot. Both the kinematics model for macro motion and dynamics model for micro motion are established by using stiffness equation and the Kane’s method, respectively. An active vibration control strategy is described by using the H2 method. Moreover, numerical simulations on the inverse solution for macro motion, workspace, and the active vibration control effects are performed at the end of this paper.

References

1.
Li
,
Y.
, and
Xu
,
Q.
, 2006, “
A Novel Design and Analysis of a 2-DOF Compliant Parallel Micromanipulator for Nanomanipulation
,”
IEEE Trans. Automa. Sci. Eng.
,
3
(
3
), pp.
247
254
.
2.
Li
,
Y.
,
Liu
,
Y.
,
Liu
,
X.
, and
Peng
,
Z.
, 2004, “
Parameter Identification and Vibration Control in Modular Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
9
(
4
), pp.
700
705
.
3.
Li
,
Y.
,
Liu
,
Y.
, and
Liu
,
X.
, 2005, “
Active Vibration Control of a Modular Robot Combining a BP Neural Network With a Genetic Algorithm
,”
J. Vib. Control
,
11
(
1
), pp.
3
17
.
4.
Tsai
,
L. W.
, and
Joshi
,
S.
, 2000, “
Kinematics and Optimization of a Spatial 3-PUU Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
439
446
.
5.
Tsai
,
L. W.
, and
Joshi
,
S.
, 2002, “
Kinematics Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
245
253
.
6.
Li
,
Y.
, and
Xu
,
Q.
, 2006, “
Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
729
737
.
7.
Kang
,
B.
, and
Mills
,
J. K.
, 2005, “
Vibration Control of a Planar Parallel Manipulator Using Piezoelectric Actuators
,”
J. Intell. Robotic Syst.
,
42
(
1
), pp.
51
70
.
8.
Dong
,
W.
,
Sun
,
L. N.
, and
Du
,
Z. J.
, 2007, “
Design of a Precision Compliant Parallel Positioner Driven by Dual Piezoelectric Actuators
,”
Sens. Actuators, A
,
135
(
1
), pp.
250
256
.
9.
Yun
,
Y.
, and
Li
,
Y.
, 2009, “
Active Vibration Control Based on a 3-DOF Dual Compliant Parallel Robot Using LQR Algorithm
,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
775
780
.
10.
Yun
,
Y.
, and
Li
,
Y.
, 2011, “
Optimal Design of a 3-PUPU Parallel Robot With Compliant Hinges for Micromanipulation in a Cubic Workspace
,”
Rob. Comput.-Integr. Manufact.
,
27
(
6
), pp.
977
985
.
11.
Geng
,
Z. J.
, and
Haynes
,
L. S.
, 1994, “
Six Degree-of-freedom Active Vibration Control Using the Stewart Platform
,”
IEEE Trans. Control Syst. Technol.
,
2
(
1
), pp.
45
53
.
12.
Hampton
,
R. D.
, and
Beech
,
G. S.
, 2001, “
A Kane’s Dynamics Model for the Active Rack Isolation System
,” NASA/TM-2001-2110063, Marshall Space Flight Center, AL.
13.
Grodsinsky
,
C. M.
, and
Whorton
,
M. S.
, 2000, “
A Survey of Active Vibration Isolation Systems for Microgravity Applications
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
586
596
.
14.
Jackson
,
M.
,
Kim
,
Y.
, and
Whorton
,
M. S.
, 2002, “
Design and Analysis of the g-LIMIT Baseline Vibration Isolation Control System
,” Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp.
2002
5019
.
15.
Hyde
,
T. T.
, 1995, “
H2 Synthesis for Active Vibration Isolation
,” Proceedings of the American Control Conference, pp.
3835
3839
.
16.
Hampton
,
R. D.
, and
Whorton
,
M. S.
, 2000, “
Frequency-Weighting Filter Selection, for H2 Control of Microgravity Isolation Systems: A Consideration of the ‘Implicit Frequency Weighting’ Problem
,”
IEEE Trans. Instrum. Meas.
,
49
(
2
), pp.
268
273
.
17.
Whorton
,
M. S.
, 2002, “
Robust Control for Microgravity Vibration Isolation With Parametric Uncertainty
,” Proceedings of the American Control Conference, pp.
256
261
.
18.
Fialho
,
I. J.
, 2000, “
H-Infinity Control Design for the Active Rack Isolation System
,” Proceedings of the American Control Conference, pp.
ACC00
-
1EEE007 1
.
19.
N.
Lobontiu
, 2002,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Taylor & Francis, Boca Raton, FL
.
20.
Doyle
,
J. F.
, 2001,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
,
Springer-Verlag
,
New York
.
21.
Dyke
,
S. J.
,
Spencer
,
B. F.
,
Quast
,
P.
,
Sain
,
M. K.
,
Kaspaari
,
D. C.
, and
Soong
,
T. T.
, 1996, “
Acceleration Feedback Control of MDOF Structures
,”
ASME J. Eng. Mechanics
,
122
(
9
), pp.
907
918
.
22.
Liu
,
Y.
, and
Li
,
Y.
, 2005, “
Sliding Mode Adaptive Neural-network Control for Nonholonomic Mobile Modular Manipulators
,”
J. Intell. Robotic Syst.
,
44
(
3
), pp.
203
224
.
23.
Kramer
,
F. S.
, and
Calise
,
A. J.
, 1988, “
Fixed-Order Dynamic Compensation for Multivariable Linear System
,”
AIAA J. Guid. Control Dyn.
,
11
(
1
), pp.
80
85
.
24.
Whorton
,
M. S.
, 2003, “
Robust Control for Microgravity Vibration Isolation Using Fixed-order, Mixed H2/μ Design
,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper No. 2003-5422.
25.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.