A novel Udwadia-Kalaba approach for parallel manipulator dynamics analysis is presented. The approach segments a parallel manipulator system into several leg-subsystems and the platform subsystem, which are connected by kinematic constraints. The Udwadia-Kalaba equation is then used to calculate the constraint forces due to the constraints. Based on this, the equation of motion, which is an explicit (i.e., closed) form, can be formulated. The method allows a systematic procedure to generate the dynamic model for both direct dynamics and inverse dynamics without invoking additional variables (such as multipliers or quasi-variables), nor does it require projection. A classical parallel Stewart-Gough platform is chosen to demonstrate the feasibility and advantages of this approach.

References

1.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng., Part B
,
180
(
15
), pp.
371
386
.10.1243/PIME_PROC_1965_180_029_02
2.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nahon
,
M. A.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.10.1115/1.533542
3.
Dunlopa
,
G. R.
, and
Jonesa
,
T. P.
,
1999
, “
Position Analysis of a Two DOF Parallel Mechanism—The Canterbury Tracker
,”
Mech. Mach. Theory
,
34
(
4
), pp.
599
614
.10.1016/S0094-114X(98)00020-2
4.
Lee
,
K. M.
, and
Arjunan
,
S.
,
1991
, “
A Three-Degrees-of-Freedom Micromotion In-Parallel Actuated Manipulator
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
634
641
.10.1109/70.97875
5.
Huang
,
T.
,
Li
,
Z.
,
Li
,
M.
,
Chetwynd
,
D.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.10.1115/1.1711822
6.
Zhang
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Kinetostatic Modeling of Parallel Mechanisms With A Passive Constraining Leg and Revolute Actuators
,”
Mech. Mach. Theory
,
37
(
6
), pp.
599
617
.10.1016/S0094-114X(02)00011-3
7.
Do
,
W.
, and
Yang
,
D.
,
1988
, “
Inverse Dynamic Analysis and Simulation of a Platform Type of Robot
,”
J. Rob. Syst.
,
5
(
3
), pp.
209
227
.10.1002/rob.4620050304
8.
Reboulet
,
C.
, and
Berthomieu
,
T.
,
1991
, “
Dynamic Models of a Six Degree of Freedom Parallel Manipulators
,”
Proceedings of the 5th International Conference on Advanced Robotics
,
Pisa, Italy
, pp.
1153
1157
.
9.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
1998
, “
A Newton-Euler Formulation for the Inverse Dynamics of The Stewart Platform Manipulator
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1135
1152
.10.1016/S0094-114X(97)00118-3
10.
Riebe
,
S.
, and
Ulbrich
,
H.
,
2003
, “
Modelling and Online Computation of the Dynamics of a Parallel Kinematic With Six Degrees-of-Freedom
,”
Arch. Appl. Mech.
,
72
, pp.
817
829
.
11.
Guo
,
H.
, and
Li
,
H.
,
2006
, “
Dynamic Analysis and Simulation of a Six Degree of Freedom Stewart Platform Manipulator
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
1
), pp.
61
72
.10.1243/095440605X32075
12.
Khalil
,
W.
,
2011
, “
Dynamic Modeling of Robots Using Newton-Euler Formulation
,”
Informatics in Control, Automation and Robotics, Lecture Notes in Electrical Engineering
, Vol.
89
, part 1,
Springer
,
New York
, pp.
3
20
.
13.
Nguyen
,
C.
, and
Pooran
,
F.
,
1989
, “
Dynamic Analysis of a 6 DOF CKCM Robot End-Effector for Dual-Arm Telerobot Systems
,”
Rob. Auton. Syst.
,
5
(
4
), pp.
377
394
.10.1016/0921-8890(89)90022-5
14.
Geng
,
Z.
,
Haynes
,
L. S.
,
Lee
,
J. D.
, and
Carroll
,
R. L.
,
1992
, “
On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms
,”
Rob. Auton. Syst.
,
9
(
4
), pp.
237
254
.10.1016/0921-8890(92)90041-V
15.
Lebret
,
G.
,
Liu
,
K.
, and
Lewis
,
F.
,
1993
, “
Dynamic Analysis and Control of a Stewart Platform Manipulator
,”
J. Rob. Syst.
,
10
(
5
), pp.
629
655
.10.1002/rob.4620100506
16.
Liu
,
K.
,
Lewis
,
F.
,
Lebret
,
G.
, and
Taylor
,
D.
,
1993
, “
The Singularities and Dynamics of a Stewart Platform Manipulator
,”
J. Intell. Robotic Syst.
,
8
(
3
), pp.
287
308
.10.1007/BF01257946
17.
Gregorio
,
R. D.
, and
Parenti-Castelli
, V
.
,
2004
, “
Dynamics of a Class of Parallel Wrists
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
436
441
.10.1115/1.1737382
18.
Driels
,
M. R.
,
Fan
,
U. J.
, and
Pathre
,
U. S.
,
1988
, “
The Application of Newton-Euler Recursive Methods to the Derivation of Closed Form Dynamic Equations
,”
J. Rob. Syst.
,
5
(
3
), pp.
229
248
.10.1002/rob.4620050305
19.
Yiu
,
Y. K.
,
Cheng
,
H.
,
Xiong
,
Z. H.
,
Liu
,
G. F.
, and
Li
,
Z. X.
,
2001
, “
On the Dynamics of Parallel Manipulators
,”
Proceedings of the 2001 IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
, May, pp.
3766
3771
.
20.
Tsai
,
L. W.
,
2000
, “
Solving the Inverse Dynamics of Stewart-Gough Manipulator by The Principle of Virtual Work
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
3
9
.10.1115/1.533540
21.
Gallardo
,
J.
,
Rico
,
J.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.10.1016/S0094-114X(03)00054-5
22.
Miller
,
K.
,
2004
, “
Optimal Design and Modeling of Spatial Parallel Manipulators
,”
Int. J. Robot. Res.
,
23
(
2
), pp.
127
140
.10.1177/0278364904041322
23.
Staicu
,
S.
,
Liu
,
X. J.
, and
Wang
,
J. S.
,
2007
, “
Inverse Dynamics of the Half Parallel Manipulator With Revolute Actuators
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
1
12
.10.1007/s11071-006-9138-5
24.
Staicu
,
S.
, and
Zhang
,
D.
,
2008
, “
A Novel Dynamic Modelling Approach for Parallel Mechanisms Analysis
,”
Rob. Comput.-Integr. Manufact.
,
24
(
1
), pp.
167
172
.10.1016/j.rcim.2006.09.001
25.
Khalil
,
W.
, and
Ibrahim
,
O.
,
2007
, “
General Solution for the Dynamic Modelling of Parallel Robots
,”
J. Intell. Robotic Syst.
,
49
, pp.
19
37
.10.1007/s10846-007-9137-x
26.
Lopes
,
A.M.
and
Almeida
,
F.
,
2009
, “
The Generalized Momentum Approach to the Dynamic Modeling of A 6-DOF Parallel Manipulator
,”
Multibody Syst. Dyn.
,
21
(
2
), pp.
123
146
.10.1007/s11044-008-9131-5
27.
Lopes
,
A. M.
,
2010
, “
Complete Dynamic Modelling of a Moving Base 6-DOF Parallel Manipulator
,”
Robotica
,
28
, pp.
781
793
.10.1017/S0263574709990506
28.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
,
1996
,
Analytical Dynamics: A New Approach
,
Cambridge University
,
Cambridge, UK
.
29.
Sivakumar
,
K. C.
,
2006
, “
Proof by Verification of the Greville/Udwadia/Kalaba Formula for the Moore-Penrose Inverse of a Matrix
,”
J. Optim. Theory Appl.
,
131
(
2
), pp.
307
311
.10.1007/s10957-006-9148-y
30.
Rosenberg
,
R. M.
,
1977
,
Analytical Dynamics of Discrete Systems
,
Plenum
,
New York
.
31.
Chen
,
Y. H.
,
1998
, “
Pars's Acceleration Paradox
,”
J. Franklin Inst.
,
335B
, pp.
871
875
.10.1016/S0016-0032(97)00016-1
32.
Abraham
,
R.
,
Marsden
,
J. E.
, and
Ratiu
,
T.
,
1988
,
Manifolds, Tensor Analysis, and Applications
, 2nd ed.,
Springer Verlag
,
New York
.
33.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
,
Heinemann
,
London
.
34.
Papastavridis
,
J. G.
,
2002
,
Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians
,
Oxford University
,
New York
.
35.
Craig
,
J. J.
,
1989
,
Introduction to Robotics: Mechanics and Control
, 2nd ed.,
Addison Wesley
,
MA
.
36.
Huang
,
J.
,
Chen
,
Y. H.
, and
Guo
,
K. H.
,
2011
, “
A Novel Cascade Approach to Multibody System Modeling
,”
Proceedings of the 13th IASTED International Conference on Control and Applications
,
CA
, pp.
141
148
.
37.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic-Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
You do not currently have access to this content.