The identification of three-dimensional (3D) race track models from noisy measured GPS data is treated as a problem in the differential geometry of curves and surfaces. Curvilinear coordinates are adopted to facilitate the use of the track model in the solution of vehicular optimal control problems. Our proposal is to model race tracks using a generalized Frenet–Serret apparatus, so that the track is specified in terms of three displacement-dependent curvatures and two edge variables. The optimal smoothing of the curvature and edge variables is achieved using numerical optimal control techniques. Track closure is enforced through the boundary conditions associated with the optimal control problem. The Barcelona formula one track is used as an illustrative example.

References

1.
Hendrikx
,
J. M.
,
Meijlink
,
T.
, and
Kriens
,
R. F. C.
,
1996
, “
Application of Optimal Control Theory to Inverse Simulation of Car Handling
,”
Vehicle System Dynamics
,
26
(6)
, pp.
449
461
.10.1080/00423119608969319
2.
Casanova
,
D.
,
2000
, “
On Minimum Time Vehicle Manoeuvring: The Theoretical Optimal Lap
,” Ph.D. thesis, Cranfield University School of Engineering, Bedfordshire, UK.
3.
Kelly
,
D. P.
,
2008
, “
Lap Time Simulation with Transient Vehicle and Tyre Dynamics
,” Ph.D. thesis, Cranfield University School of Engineering, Bedfordshire, UK.
4.
Cossalter
,
V.
,
Lio
,
M. D.
,
Lot
,
R.
, and
Fabbri
,
L.
,
1999
, “
A General Method for the Evaluation of Vehicle Manoeuvrability With Special Emphasis on Motorcycles
,”
Veh. Syst. Dyn.
,
31
(2)
, pp.
113
135
.10.1076/vesd.31.2.113.2094
5.
Perantoni
,
G.
, and
Limebeer
,
D. J.
,
2014
, “
Optimal Control for a Formula One Car With Variable Parameters
,”
Veh. Syst. Dyn.
,
52
(
5
), pp.
653
678
.10.1080/00423114.2014.889315
6.
Timings
,
J. P.
, and
Cole
,
D. J.
,
2013
, “
Minimum Maneuver Time Calculation Using Convex Optimization
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(3)
, p.
031015
.10.1115/1.4023400
7.
Koenderink
,
J. J.
,
1990
,
Solid Shape
(Artificial Intelligence),
MIT
,
Cambridge, MA
.
8.
White
,
J. H.
, and
Bauer
,
W. R.
,
1986
, “
Calculation of the Twist and the Writhe for Representative Models of DNA
,”
J. Mol. Bio.
,
189
(
2
), pp.
329
341
.10.1016/0022-2836(86)90513-9
9.
Panyukov
,
S.
, and
Rabin
,
Y.
,
2000
, “
Fluctuating Filaments: Statistical Mechanics of Helices
,”
Phys. Rev. E
,
62
(
5 Pt B
), pp.
7135
46
.10.1103/PhysRevE.62.7135
10.
Kessler
,
D. A.
, and
Rabin
,
Y.
,
2003
, “
Effect of Curvature and Twist on the Conformations of a Fluctuating Ribbon
,”
J. Chem. Phys.
,
118
(
2
), pp.
897
904
.10.1063/1.1526467
11.
Rappaport
,
S. M.
, and
Rabin
,
Y.
,
2007
, “
Differential Geometry of Polymer Models: Worm-Like Chains, Ribbons and Fourier Knots
,”
J. Phys. A: Math. Theor.
,
40
(17)
, pp.
4455
4466
.10.1088/1751-8113/40/17/003
12.
Behringer
,
R.
,
van Holt
,
V.
, and
Dickmanns
,
D.
,
1992
, “
Road and Relative Ego-State Recognition
,”
Proceedings of the Intelligent Vehicles '92 Symposium
, Detroit, MI, June 29–July 7, pp.
385
390
.
13.
Dickmanns
,
E.
, and
Mysliwetz
,
B.
,
1992
, “
Recursive 3-D Road and Relative Ego-State Recognition
,”
IEEE Trans. Patt. Anal. Mach. Intell.
,
14
(
2
), pp.
199
213
.10.1109/34.121789
14.
Behringer
,
R.
,
1995
, “
Detection of Discontinuities of Road Curvature Change by GLR
,”
Proceedings of the Intelligent Vehicles '95 Symposium
, Detroit, MI, Sept. 25–26, pp.
78
83
.
15.
Khosla
,
D.
,
2002
, “
Accurate Estimation of Forward Path Geometry Using Two-Clothoid Road Model
,”
IEEE Intelligent Vehicle Symposium
, Versailles, France, June 17–21, Vol.
1
, pp.
154
159
.
16.
Loose
,
H.
, and
Franke
,
U.
,
2010
. “
B-Spline-Based Road Model for 3D Lane Recognition
,”
13th International IEEE Conference on Intelligent Transportation Systems (ITSC)
, Funchal, Madeira Island, Portugal, Sept. 19–22, pp.
91
98
.
17.
Cong
,
S.
,
Shen
,
S.
, and
Hong
,
L.
,
2009
, “
Road Curvature Estimation System
,” U.S. Patent No. 7,626,533.
18.
Shen
,
T.
, and
Ibrahim
,
F.
,
2012
, “
Interacting Multiple Model Road Curvature Estimation
,”
15th International IEEE Conference on Intelligent Transportation Systems (ITSC)
,
Anchorage
,
AK
, Sept. 16–19, pp.
710
715
.
19.
Eidehall
,
A.
, and
Gustafsson
,
F.
,
2006
Obtaining Reference Road Geometry Parameters From Recorded Sensor Data
,”
IEEE Intelligent Vehicles Symposium
, Tokyo, Japan, June 13–15, pp.
256
260
.
20.
Mena
,
J.
,
2003
, “
State of the Art on Automatic Road Extraction for GIS Update: A Novel Classification
,”
Pattern Recognit. Lett.
,
24
(
16
), pp.
3037
3058
.10.1016/S0167-8655(03)00164-8
21.
Lin
,
X.
,
Zhang
,
J.
,
Liu
,
Z.
,
Shen
,
J.
, and
Duan
,
M.
,
2011
, “
Semi-Automatic Extraction of Road Networks by Least Squares Interlaced Template Matching in Urban Areas
,”
Int. J. Remote Sens.
,
32
(
17
), pp.
4943
4959
.10.1080/01431161.2010.493565
22.
Willemsen
,
P.
,
Kearney
,
J.
, and
Wang
,
H.
,
2003
, “
Ribbon Networks for Modeling Navigable Paths of Autonomous Agents in Virtual Urban Environments
,” IEEE Virtual Reality, Los Angeles, CA, Mar. 22–26, pp.
79
86
.
23.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover Publications
,
New York
.
24.
Struik
,
D. J.
,
1988
,
Lectures on Classical Differential Geometry
, 2nd ed.,
Dover
,
New York
.
25.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
(Prentice-Hall Series in Automatic Computation),
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
,
1996
,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
(SIAM's Classics in Applied Mathematics),
SIAM
,
Philadelphia, PA
.
27.
Griffiths
,
D.
, and
Higham
,
D.
,
2010
,
Numerical Methods for Ordinary Differential Equations: Initial Value Problems
,
Springer
, New York.
28.
Betts
,
J. T.
,
2001
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, 2nd ed.,
SIAM
,
Philadelphia, PA
.
29.
Darby
,
C. L.
,
Hager
,
W. W.
, and
Rao
,
A. V.
,
2011
, “
An Hp-Adaptive Pseudospectral Method for Solving Optimal Control Problems
,”
Optim. Control Appl. Methods
,
32
(
4
), pp.
476
502
.10.1002/oca.957
30.
Limebeer
,
D. J. N.
, and
Perantoni
,
G.
,
2013
, “
Optimal Control of a Formula One Car on a Three-Dimensional Track Part 2: Optimal Control,
ASME J. Dyn. Syst., Meas.
, Control,(submitted).
31.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2013
, “
GPOPS—II: A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Soft.
,
39
(3), 41 pages.
32.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2011
, “
Exploiting Sparsity in Direct Collocation Pseudospectral Methods for Solving Optimal Control Problems
,”
J. Spacecr. Rockets
,
49
(
2
), pp.
364
377
.
33.
Lawrence
,
J. D.
,
1972
,
A Catalog of Special Plane Curves
,
Dover Publications
,
New York
.
You do not currently have access to this content.