This paper focuses on the stability analysis of linear fractional-order systems with fractional-order 0<α<2, in the presence of time-varying uncertainty. To obtain a robust stability condition, we first derive a new upper bound for the norm of Mittag-Leffler function associated with the nominal fractional-order system matrix. Then, by finding an upper bound for the norm of the uncertain fractional-order system solution, a sufficient non-Lyapunov robust stability condition is proposed. Unlike the previous methods for robust stability analysis of uncertain fractional-order systems, the proposed stability condition is applicable to systems with time-varying uncertainty. Moreover, the proposed condition depends on the fractional-order of the system and the upper bound of the uncertainty matrix norm. Finally, the offered stability criteria are examined on numerical uncertain linear fractional-order systems with 0<α<1 and 1<α<2 to verify the applicability of the proposed condition. Furthermore, the stability of an uncertain fractional-order Sallen–Key filter is checked via the offered condition.

References

1.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu-Batlle
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer
,
London
.
2.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petr
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
4.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2010
, “
Stabilization of Unstable Fixed Points of Fractional-Order Systems by Fractional-Order Linear Controllers and Its Applications in Suppression of Chaotic Oscillations
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
2
), p.
021008
.
5.
Rajagopal
,
K.
,
Vaidyanathan
,
S.
,
Karthikeyan
,
A.
, and
Duraisamy
,
P.
,
2017
, “
Dynamic Analysis and Chaos Suppression in a Fractional-Order Brushless DC Motor
,”
Electr. Eng.
,
99
(
2
), pp.
721
733
.
6.
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2016
, “
Chaos in Fractional Order Financial Delay System
,”
Comput. Math. Appl.
(in press).
7.
Chen
,
X.
,
Chen
,
Y.
,
Zhang
,
B.
, and
Qiu
,
D.
,
2016
, “
A Method of Modeling and Analysis for Fractional-Order dc-dc Converters
,”
IEEE Trans. Power Electron
,
32
(
9
), pp.
7034
7044
.
8.
Tavakoli-Kakhki
,
M.
, and
Haeri
,
M.
,
2011
, “
Temperature Control of a Cutting Process Using Fractional Order Proportional-Integral-Derivative Controller
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
5
), p.
051014
.
9.
Tang
,
Y.
,
Wang
,
Y.
,
Han
,
M.
, and
Lian
,
Q.
,
2016
, “
Adaptive Fuzzy Fractional-Order Sliding Mode Controller Design for Antilock Braking Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
4
), p.
041008
.
10.
Nataraj
,
P. S. V.
, and
Tharewal
,
S.
,
2006
, “
On Fractional-Order QFT Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
129
(
2
), pp.
212
218
.
11.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
.
12.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2009
, “
A Note on the Stability of Fractional Order Systems
,”
Math. Comput. Simul.
,
79
(
5
), pp.
1566
1577
.
13.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.
14.
Dadras
,
S.
,
Dadras
,
S.
,
Malek
,
H.
, and
Chen
,
Y. Q.
,
2017
, “
A Note on the Lyapunov Stability of Fractional Order Nonlinear Systems
,”
ASME
Paper No. DETC2017-68270.
15.
Shen
,
J.
, and
Lam
,
J.
, “
Stability and Performance Analysis for Positive Fractional-Order Systems With Time-Varying Delays
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2676
2681
.
16.
Chen
,
Y. Q.
,
Ahn
,
H. S.
, and
Podlubny
,
I.
,
2006
, “
Robust Stability Check of Fractional Order Linear Time Invariant Systems With Interval Uncertainties
,”
Signal Process.
,
86
(
10
), pp.
2611
2618
.
17.
Ahn
,
H. S.
, and
Chen
,
Y. Q.
,
2008
, “
Necessary and Sufficient Stability Condition of Fractional-Order Interval Linear Systems
,”
Automatica
,
44
(
11
), pp.
2985
2988
.
18.
Alagoz
,
B. B.
,
Yeroglu
,
C.
,
Senol
,
B.
, and
Ates
,
A.
,
2015
, “
Probabilistic Robust Stabilization of Fractional Order Systems With Interval Uncertainty
,”
ISA Trans.
,
57
, pp.
101
110
.
19.
Gao
,
Z.
,
2017
, “
Robust Stabilization of Interval Fractional-Order Plants With One Time-Delay by Fractional-Order Controllers
,”
J. Franklin Inst.
,
354
(
2
), pp.
767
786
.
20.
Lan
,
Y.-H.
, and
Zhou
,
Y.
,
2011
, “
LMI-Based Robust Control of Fractional-Order Uncertain Linear Systems
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1460
1471
.
21.
Ji
,
Y.
, and
Qiu
,
J.
,
2015
, “
Stabilization of Fractional-Order Singular Uncertain Systems
,”
ISA Trans.
,
56
, pp.
53
64
.
22.
Qian
,
D.
,
Li
,
C.
,
Agarwal
,
R. P.
, and
Wong
,
P. J. Y.
,
2010
, “
Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative
,”
Math. Comput. Modell.
,
52
(
5–6
), pp.
862
874
.
23.
Alavian-Shahri
,
E.
,
Alfi
,
A.
, and
Machado
,
T.
,
2017
, “
Robust Stability and Stabilization of Uncertain Fractional Order Systems Subject to Input Saturation
,”
J. Vib. Control
,
24
(16), pp. 3676–3683.
24.
Wu
,
M. Y.
,
1974
, “
A Note on Stability of Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
19
(
2
), pp.
162
164
.
25.
Levin
,
B. J.
,
1964
,
Distribution of Zeros of Entire Functions
,
Translation of Mathematical Monograph
, Vol. 5, Providence,
RI
.
26.
Corduneanu
,
C.
,
1971
,
Principles of Differential and Integral Equations
, Allyn and Bacon,
Boston, MA
.
27.
Wen
,
X. J.
,
2008
, “
Stability Analysis of a Class of Nonlinear Fractional-Order Systems
,”
IEEE Trans. Circuits Syst. II
,
55
(
11
), pp.
1178
1182
.
28.
Bellman
,
R.
,
1960
,
Introduction to Matrix Analysis
,
McGraw-Hill
,
New York
.
29.
Ait-Rami
,
M.
,
El-faiz
,
S.
,
Benzaouia
,
A.
, and
Tadeo
,
F.
,
2009
, “
Robust Exact Pole Placement Via an LMI-Based Algorithm
,”
IEEE Trans. Autom. Control
,
54
(
2
), pp.
394
398
.
30.
Soltan
,
A.
,
Radwan
,
G. A.
, and
Soliman
,
M. A.
,
2015
, “
Fractional Order Sallen–Key and KHN Filters: Stability and Poles Allocation
,”
Circuits, Syst., Signal Process.
,
34
(
5
), pp.
1461
1480
.
You do not currently have access to this content.