Abstract

Fluid-borne noise (FBN) is a major contributor to structure-borne noise (SBN) and air-borne noise (ABN) in hydraulic fluid power systems and could lead to increased fatigue in system components. FBN is caused by the unsteady flow generated by pumps and motors and propagates through the system resulting in SBN and ABN. New hydraulic technologies such as digital switched hydraulic converters are also barriered by the unavoidable FBN. This article reports on a novel integrated FBN attenuation approach, which employs a hybrid control system by integrating an active feedforward noise attenuator with passive tuned flexible hoses. The active system which consists of adaptive notch filters using a variable step-size filtered-X Least Mean Squares algorithm is used to control a newly designed high-force high-bandwidth piezo-electric actuator in order to attenuate the dominant narrowband pressure ripples. The passive hose is tuned in the frequency domain and used to cancel the high-frequency pressure ripples. A time-domain hose model considering coupling of longitudinal wall and fluid waves was used to model the flexible hose in the integrated control system. Very good FBN cancelation was achieved by using the proposed integrated control approach both in simulation and experiments. It can be concluded that the active attenuator with passive flexible hoses can form an effective, cost-efficient and practical solution for FBN attenuation. The problem of high noise levels generated by hydraulically powered machines has risen significantly in awareness within industry and amongst the general public, and this work constitutes an important contribution to the sustainable development of low noise hydraulic fluid power machines.

References

1.
Zhang
,
J.
,
Xia
,
S.
,
Ye
,
S.
,
Xu
,
B.
,
Zhu
,
S.
,
Xiang
,
J.
, and
Tang
,
H.
,
2019
, “
Sound Quality Evaluation and Prediction for the Emitted Noise of Axial Piston Pumps
,”
Appl. Acoust.
,
145
, pp.
27
40
.10.1016/j.apacoust.2018.09.015
2.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
H.
, and
Pan
,
M.
,
2019
, “
A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions
,”
ASME J. Mech. Des.
,
141
(
5
), p.
050801
.10.1115/1.4041582
3.
Pan
,
M.
,
Johnston
,
D. N.
,
Plummer
,
A. R.
,
Kudzma
,
S.
, and
Hillis
,
A. J.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
10
), pp.
802
815
.10.1177/0959651814548299
4.
Pan
,
M.
,
Johnston
,
D.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
228
(
1
), pp.
12
25
.10.1177/0959651813500952
5.
Pan
,
M.
,
Johnston
,
D. N.
, and
Plummer
,
A.
,
2016
, “
Hybrid Fluid-Borne Noise Control in Fluid-Filled Pipelines
,”
J. Phys.: Conf. Ser.
,
44
(
1
), p.
012016
.10.1088/1742-6596/744/1/012016
6.
Yuan
,
C.
,
Pan
,
M.
, and
Plummer
,
A.
,
2020
, “
A Review of Switched Inertance Hydraulic Converter Technology
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(5), p.
050801
.10.1115/FPMC2018-8829
7.
Pan
,
M.
, and
Plummer
,
A.
,
2018
, “
Digital Switched Hydraulics
,”
Front. Mech. Eng.
,
13
(
2
), pp.
225
231
.10.1007/s11465-018-0509-7
8.
Pan
,
M.
, and
Yang
,
H.
,
2015
, “
Engineering Research in Fluid Power: A Review
,”
J. Zhejiang Univ. Sci. A
,
16
(
6
), pp.
427
442
.10.1631/jzus.A1500042
9.
Inline Pulse-ToneTM Shock Suppressors
, “
Parker Hannifin
,” Parker Hannifin, Cleveland, OH, accessed Jan. 29, 2021, https://ph.parker.com/gb/en/accumulators
10.
Pan
,
M.
,
2017
, “
Adaptive Control of a Piezoelectric Valve for Fluid-Borne Noise Reduction in a Hydraulic Buck Converter
,”
ASME J. Dyn. Syst., Meas. Control
,
139
(
8
), p.
081007
.10.1115/1.4035613
11.
Rebel
,
J.
,
1977
, “
Active Liquid Noise-Suppressions in Oil Hydraulics (in German)
,”
VDI-Z
, Vol.
119
(
19
), Association of German Engineers, Dusseldorf, Germany, pp.
937
943
.
12.
Maillard
,
J.
,
Lago
,
T.
, and
Fuller
,
C.
,
1999
, “
Fluid Wave Actuator for the Active Control of Hydraulic Pulsations in Piping Systems
,”
Proceedings of the International Modal Analysis Conference IMAC
, Bethel, CT, Feb. 8–11, pp.
1806
1812
.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A837527&dswid=250
13.
Wang
,
L.
, and
Johnston
,
D. N.
,
2008
, “
Adaptive Attenuation of Narrow Band Fluid Borne Noise in a Simple Hydraulic System
,”
Bath/ASME Symposium on Fluid Power and Motion Control
,
University of Bath
, Bath, UK, pp.
357
368
.
14.
Pan
,
M.
,
2012
, “
Active Control of Pressure Pulsation in a Switched Inertance Hydraulic System
,” Ph.D. thesis,
University of Bath
, Bath, UK.
15.
Kuo
,
S. M.
, and
Morgan
,
D.
,
1995
,
Active Noise Control Systems: Algorithms and DSP Implementations
,
Wiley
, New York.
16.
Xu
,
B.
,
Ye
,
S.
,
Zhang
,
J.
, and
Zhang
,
C.
,
2016
, “
Flow Ripple Reduction of an Axial Piston Pump by a Combination of Cross-Angle and Pressure Relief Grooves: Analysis and Optimization
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2531
2545
.10.1007/s12206-016-0515-9
17.
Ye
,
S. G.
,
Zhang
,
J. H.
, and
Xu
,
B.
,
2018
, “
Noise Reduction of an Axial Piston Pump by Valve Plate Optimization
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
57
.10.1186/s10033-018-0258-x
18.
Lyu
,
F.
,
Ye
,
S.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
W.
,
Xu
,
H.
, and
Huang
,
X.
,
2021
, “
Theoretical and Simulation Investigations on Flow Ripple Reduction of Axial Piston Pumps Using Nonuniform Distribution of Pistons
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
4
), p. 041008.10.1115/1.4048859
19.
Pan
,
M.
,
Ding
,
B.
,
Yuan
,
C.
,
Zou
,
J.
, and
Yang
,
H.
,
2018
, “
Novel Integrated Control of Fluid-Borne Noise in Hydraulic Systems
,”
BATH/ASME 2018 Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 12–14.10.1115/FPMC2018-8828
20.
Longmore
,
D. K.
,
1977
, “
The Transmission and Attenuation of Fluid Borne Noise in Hydraulic Hose
,” IMechE Conference on Quite Oil Hydraulic Systems, London, pp.
127
138
.
21.
Johnston
,
D. N.
,
2006
, “
A Time-Domain Model of Axial Wave Propagation in Liquid-Filled Flexible Hoses
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
220
(
7
), pp.
517
530
.10.1243/09596518JSCE286
22.
Drew
,
J. E.
,
Longmore
,
D. K.
, and
Johnston
,
D. N.
,
1997
, “
Measurement of the Longitudinal Transmission Characteristics of Fluid-Filled Hoses
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
211
(
3
), pp.
219
228
.10.1243/0959651971539759
23.
Drew
,
J. E.
,
Longmore
,
D. K.
, and
Johnston
,
D. N.
,
1998
, “
Theoretical Analysis of Pressure and Flow Ripple in Flexible Hoses Containing Tuners
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
212
(
6
), pp.
405
422
.10.1243/0959651981539578
24.
Taylor
,
S. E. M.
,
1998
, “
Development of Numerical Models for Hydraulic Pipelines and Flexible Hoses
,” Ph.D. thesis,
University of Bath
, Bath, UK.
25.
Way
,
T. M.
,
2004
, “
The Use of Hoses and Hose Inserts to Reduce Pressure Ripple in Hydraulic Circuits
,” Ph.D. thesis,
University of Bath
, Bath, UK.
26.
Johnston
,
D. N.
,
Way
,
T. M.
, and
Cone
,
K. M.
,
2010
, “
Measured Dynamic Properties of Flexible Hoses
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021011
.10.1115/1.4000774
27.
Johnston
,
D. N.
,
2007
, “
Pressure Ripple Analysis Software Package PRASP: User Guide and Reference Manual
,”
Centre for Power Transmission and Motion Control
,
University of Bath
,
Bath, UK
.
28.
Widrow
,
B.
, and
Hoff
,
M. E.
,
1960
, “
Adaptive Switching Circuits
,”
Stanford University
,
Stanford, CA
, Report No. TR-1553-1.
29.
Haykin
,
S.
,
1996
,
Adaptive Filter Theory
,
Prentice Hall
,
Eaglewood Cliffs, NJ
.
30.
Huang
,
B.
,
Xiao
,
Y.
,
Sun
,
J.
, and
Wei
,
G.
,
2013
, “
A Variable Step-Size FXLMS Algorithm for Narrowband Active Noise Control
,”
IEEE Trans. Audio, Speech, Language Process.
,
21
(
2
), pp.
301
312
.10.1109/TASL.2012.2223673
31.
Branson
,
D. T.
,
Johnston
,
D. N.
,
Tilley
,
D. G.
,
Bowen
,
C. R.
, and
Keogh
,
P. S.
,
2010
, “
Piezoelectric Actuation in a High Bandwidth Valve
,”
Ferroelectrics
,
408
(
1
), pp.
32
40
.10.1080/00150193.2010.484994
32.
Physik Instrument Ltd.
, “
P-225 PICA Power Piezo Actuators Datasheet and E-482 PICA High-Performance Piezo Amplifier Datasheet, PI Physik Instrument LT
,” Physik Instrument Ltd., accessed Jan. 29, 2021, https://www.physikinstrumente. co.uk/en/products/linear-actuators/nanopositioning-piezo-actuators/p-225-pica-power-piezo-actuators-101750/
You do not currently have access to this content.