Abstract

This brief paper emphasizes on the experimental study of a hybrid contact model combining a traditional physical-based contact model and a data-driven error model in order to provide a more accurate description of a contact dynamics phenomenon. The physical-based contact model is employed to describe the known contact physics of a complex contact case, while the data-driven error model, which is an artificial neural network model trained from experimental data using a machine learning technique, is used to represent the inherent unmodeled factors of the contact case. A bouncing ball experiment is designed and performed to validate the model. The hybrid contact model can duplicate experimental results well, which demonstrates the feasibility and accuracy of the presented approach.

References

1.
Römer
,
U. J.
,
Fidlin
,
A.
, and
Seemann
,
W.
,
2018
, “
Explicit Analytical Solutions for Two-Dimensional Contact Detection Problems Between Almost Arbitrary Geometries and Straight or Circular Counterparts
,”
Mech. Mach. Theory
,
128
(
1
), pp.
205
224
.10.1016/j.mechmachtheory.2018.05.018
2.
Liu
,
C. H.
, and
Lee
,
K. M.
,
2012
, “
Dynamic Modeling of Damping Effects in Highly Damped Compliant Fingers for Applications Involving Contacts
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
1
), p.
011005
.10.1115/1.4005270
3.
Shen
,
Y. H.
,
Xiang
,
D.
,
Wang
,
X.
,
Jiang
,
L.
, and
Wei
,
Y. Z.
,
2018
, “
A Contact Force Model Considering Constant External Forces for Impact Analysis in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
44
(
4
), pp.
397
419
.10.1007/s11044-018-09638-0
4.
Gilardi
,
G.
, and
Sharf
,
I.
,
2002
, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1213
1239
.10.1016/S0094-114X(02)00045-9
5.
Yu
,
L.
,
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2010
, “
Multibody Dynamic Model of Web Guiding System With Moving Web
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
5
), p.
051004
.10.1115/1.4001797
6.
Banerjee
,
A.
,
Chanda
,
A.
, and
Das
,
R.
,
2017
, “
Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review
,”
Arch. Comput. Methods Eng.
,
24
(
2
), pp.
397
422
.10.1007/s11831-016-9164-5
7.
Skrinjar
,
L.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2018
, “
A Review of Continuous Contact-Force Models in Multibody Dynamics
,”
Int. J. Mech. Sci.
,
145
(
1
), pp.
171
187
.10.1016/j.ijmecsci.2018.07.010
8.
Hertz
,
H.
,
1882
, “
Über Die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
,
92
, pp.
156
171
.
9.
Hunt
,
K. H.
, and
Crossley
,
F. R. E.
,
1975
, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
ASME J. Appl. Mech.
,
42
(
2
), pp.
440
445
.10.1115/1.3423596
10.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
,
1990
, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
369
376
.10.1115/1.2912617
11.
Gonthier
,
Y.
,
Mcphee
,
J.
,
Lange
,
C.
, and
Piedbœuf
,
J. C.
,
2004
, “
A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction
,”
Multibody Syst. Dyn.
,
11
(
3
), pp.
209
233
.10.1023/B:MUBO.0000029392.21648.bc
12.
Wu
,
S.
,
Mou
,
F. L.
,
Liu
,
Q.
, and
Cheng
,
J.
,
2018
, “
Contact Dynamics and Control of a Space Robot Capturing a Tumbling Object
,”
Acta Astronaut.
,
151
(
1
), pp.
532
542
.10.1016/j.actaastro.2018.06.052
13.
Flores
,
P.
,
Machado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.10.1007/s11044-010-9237-4
14.
Zhang
,
Y. N.
, and
Sharf
,
I.
,
2009
, “
Validation of Nonlinear Viscoelastic Contact Force Models for Low Speed Impact
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051002
.10.1115/1.3112739
15.
Yu
,
J.
,
Chu
,
J.
,
Li
,
Y.
, and
Guan
,
L.
,
2020
, “
An Improved Compliant Contact Force Model Using a Piecewise Function for Impact Analysis in Multibody Dynamics
,”
Proc. Inst. Mech. Eng., Part K
,
234
(
2
), pp.
1
9
.10.1177/1464419319900874
16.
Weber
,
M.
,
Patel
,
K.
,
Ma
,
O.
, and
Sharf
,
I.
,
2006
, “
Identification of Contact Dynamics Model Parameters From Constrained Robotic Operations
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
307
318
.10.1115/1.2192839
17.
Cao
,
D. Q.
,
Yang
,
Y.
,
Chen
,
H. T.
,
Wang
,
D. Y.
,
Jiang
,
G. Y.
,
Li
,
C. G.
,
Wei
,
J.
, and
Zhao
,
K.
,
2016
, “
A Novel Contact Force Model for the Impact Analysis of Structures With Coating and Its Experimental Verification
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1056
1072
.10.1016/j.ymssp.2015.08.016
18.
Boos
,
M.
, and
McPhee
,
J.
,
2013
, “
Volumetric Modeling and Experimental Validation of Normal Contact Dynamic Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p.
021006
.10.1115/1.4006836
19.
Liu
,
Q.
,
Li
,
H. Q.
, and
Ma
,
O.
,
2019
, “
A Novel Hybrid Modeling Method for Contact Problems
,”
ASME
Paper No. DETC2019-97125.10.1115/DETC2019-97125
20.
Liu
,
Q.
,
Liang
,
J.
, and
Ma
,
O.
,
2020
, “
A Physics-Based and Data-Driven Hybrid Modeling Method for Accurately Simulating Complex Contact Phenomenon
,”
Multibody Syst. Dyn.
,
50
(
1
), pp.
97
117
.10.1007/s11044-020-09746-w
21.
Yao
,
L.
,
Sethares
,
W. A.
, and
Kammer
,
D. C.
,
1993
, “
Sensor Placement for On-Orbit Modal Identification Via a Genetic Algorithm
,”
AIAA J.
,
31
(
10
), pp.
1922
1928
.10.2514/3.11868
22.
Zhang
,
C. Y.
,
Li
,
W. D.
,
Jiang
,
P. Y.
, and
Gu
,
P. H.
,
2017
, “
Experimental Investigation and Multi-Objective Optimization Approach for Low-Carbon Milling Operation of Aluminum
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
15
), pp.
2753
2772
.10.1177/0954406216640574
You do not currently have access to this content.