Abstract

A robust cascade control system based on active disturbance rejection controller (ADRC) is originally developed for accurate position control of a pneumatic servo system, which is usually characterized by nonlinearity, uncertainty, and disturbance. The proposed control system consists of inner and outer control loops. Particularly, a linear ADRC (LADRC) is utilized to adjust valve position for a linear spool valve dynamics in the inner loop. A nonlinear ADRC (NADRC) is designed to control the position of a nonlinear pneumatic actuator subsystem in the outer loop. LADRC and NADRC contain linear and nonlinear extended state observers (ESOs), respectively. The ESO can estimate both unknown nonlinear dynamics and external disturbances and thus make the ADRC robust against system uncertainties and disturbances. Simulation results successfully demonstrate the effectiveness and robustness of the proposed cascade control system. The stabilities of the inner and outer control loops were proved separately using a Lyapunov approach.

References

1.
Andrikopoulos
,
G.
, and
Nikolakopoulos
,
G.
,
2018
, “
Humanoid Robotic Leg Via Pneumatic Muscle Actuators: Implementation and Control
,”
Meccanica
,
53
(
1–2
), pp.
465
480
.10.1007/s11012-017-0738-6
2.
Yang
,
B.
,
Tan
,
U.
,
McMillan
,
A. B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2011
, “
Design and Control of a 1-DOF MRI-Compatible Pneumatically Actuated Robot With Long Transmission Lines
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1040
1048
.10.1109/TMECH.2010.2071393
3.
Takaiwa
,
M.
, and
Noritsugu
,
T.
,
2005
, “
Development of Wrist Rehabilitation Equipment Using Pneumatic Parallel Manipulator
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, Apr. 18–22, pp.
2302
2307
.10.1109/ICORR.2009.5209563
4.
Shen
,
X.
,
2010
, “
Nonlinear Model-Based Control of Pneumatic Artificial Muscle Servo Systems
,”
Control Eng. Pract.
,
18
(
3
), pp.
311
317
.10.1016/j.conengprac.2009.11.010
5.
Daw
,
N.
,
Wang
,
J.
,
Wu
,
Q.
, and
Chen
,
J.
,
2003
, “
Parameter Identification for Nonlinear Pneumatic Cylinder Actuators
,”
Nonlinear Adapt. Control
,
281
, pp.
77
88
.10.1007/3-540-45802-6
6.
Syed Salim
,
S. N.
,
Rahmat
,
M. F.
,
Mohd Faudzi
,
A. A.
,
Ismail
,
Z. H.
, and
Sunar
,
N.
,
2014
, “
Position Control of Pneumatic Actuator Using Self-Regulation Nonlinear PID
,”
Math. Probl. Eng.
,
2014
, p.
957041
.10.1155/2014/957041
7.
Mohorcic
,
J.
, and
Dong
,
L.
,
2021
, “
Extended State Observer-Based Pressure Control for Pneumatic Actuator Servo Systems
,”
Control Theory Technol.
,
19
(
1
), pp.
64
79
.10.1007/s11768-021-00038-y
8.
Ahn
,
K. K.
, and
Thanh
,
T. D. C.
,
2005
, “
Nonlinear PID Control to Improve the Control Performance of the Pneumatic Artificial Muscle Manipulator Using Neural Network
,”
J. Mech. Sci. Technol.
,
19
(
1
), pp.
106
115
.10.1007/BF02916109
9.
Chen
,
H.
,
Shyu
,
Y.
, and
Chen
,
C.
,
2010
, “
Design and Realization of a Sliding Mode Control Scheme for a Pneumatic Cylinder X-Y Axles Position Servo System
,”
Proceedings of the 2010 IET International Conference on Frontier Computing
, Theory, Technologies and Applications, Taichung, Taiwan, Aug. 4–6, pp.
416
421
.10.1049/cp.2010.0598
10.
Tsai
,
Y.
, and
Huang
,
A.
,
2008
, “
Multiple-Surface Sliding Controller Design for Pneumatic Servo Systems
,”
Mechatronics
,
18
(
9
), pp.
506
512
.10.1016/j.mechatronics.2008.03.006
11.
Laib
,
K.
,
Pham
,
M. T.
,
Lin-Shi
,
X.
, and
Meghnous
,
R.
,
2022
, “
Average Modeling and Nonlinear Observer Design for Pneumatic Actuators With On/Off Solenoid Valves
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
2
), p.
021006
.10.1115/1.4052394
12.
Boubakir
,
A.
,
Plestan
,
F.
,
Labiod
,
S.
, and
Boudjema
,
F.
,
2013
, “
A Stable Linear Adaptive Controller Applied to a Pneumatic Actuator System
,”
Proceedings of the 52nd IEEE Conference on Decision and Control
, Firenze, Italy, Dec. 10–13, pp.
6112
6117
.10.1109/CDC.2013.6760855
13.
Ren
,
H.
,
Wang
,
X.
,
Fan
,
J.
, and
Kaynak
,
O.
,
2019
, “
Adaptive Backstepping Control of a Pneumatic System With Unknown Model Parameters and Control Direction
,”
IEEE Access
,
7
, pp.
64471
64482
.10.1109/ACCESS.2019.2917401
14.
Rao
,
Z.
, and
Bone
,
G. M.
,
2008
, “
Nonlinear Modeling and Control of Servo Pneumatic Actuators
,”
IEEE Trans. Control Syst. Technol.
,
16
(
3
), pp.
562
569
.10.1109/TCST.2007.912127
15.
Zhao
,
L.
,
Zhang
,
B.
,
Yang
,
H.
, and
Li
,
Q.
,
2017
, “
Optimized Linear Active Disturbance Rejection Control for Pneumatic Servo Systems Via Least Squares Support Vector Machine
,”
Neurocomputing
,
242
, pp.
178
186
.10.1016/j.neucom.2017.02.069
16.
Bo
,
W.
,
Tao
,
W.
,
Ying
,
J.
,
Wei
,
F.
, and
Yu
,
W.
,
2013
, “
Study of Pneumatic Servo System Based on Linear Active Disturbance Rejection Controller
,”
Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Wollongong, NSW, Australia, July 9–12, pp.
1170
1174
.10.1109/AIM.2013.6584252
17.
Zhao
,
L.
,
Yang
,
Y.
,
Xia
,
Y.
, and
Liu
,
Z.
,
2015
, “
Active Disturbance Rejection Position Control for a Magnetic Rodless Pneumatic Cylinder
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5838
5846
.10.1109/TIE.2015.2418319
18.
Yang
,
Y.
,
Zhao
,
L.
,
Fan
,
X.
, and
Liu
,
Z.
,
2015
, “
Active Disturbance Rejection Trajectory Tracking Control for Pneumatic Servo System Based on Backstepping Approach
,”
Proceedings of the 2015 34th Chinese Control Conference
, Hangzhou, China, July 28–30, pp.
4308
4312
.
19.
Jun
,
J.
,
Kanaoka
,
K.
, and
Kawamura
,
S.
,
2007
, “
A Cascaded Feedback Control Method for Trajectory Tracking of Pneumatic Drive Systems
,”
Trans. Jpn. Fluid Power Syst. Soc.
,
38
(
3
), pp.
41
47
.10.5739/jfps.38.41
20.
Choi
,
G. S.
,
Lee
,
H. K.
, and
Choi
,
G. H.
,
2000
, “
A Study on Tracking Position Control of Pneumatic Actuators Using Neural Network
,”
J. Korean Soc. Saf.
,
15
(
3
), pp.
115
123
.
21.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
426
434
.10.1115/1.1286366
22.
Rad
,
C. R.
, and
Hancu
,
O.
,
2017
, “
An Improved Non-Linear Modelling and Identification Methodology of a Servo-Pneumatic Actuating System With Complex Internal Design for High-Accuracy Motion Control Applications
,”
Simul. Modell. Pract. Theory
,
75
, pp.
29
47
.10.1016/j.simpat.2017.03.008
23.
Saravanakumar
,
D.
,
Mohan
,
B.
, and
Muthuramalingam
,
T.
,
2017
, “
A Review on Recent Research Trends in Servo Pneumatic Positioning Systems
,”
Precis. Eng.
,
49
, pp.
481
492
.10.1016/j.precisioneng.2017.01.014
24.
Dong
,
L.
,
Mandali
,
A.
,
Morinec
,
A.
, and
Zhao
,
Y.
,
2018
, “
Active Disturbance Rejection-Based Load Frequency Control and Voltage Regulation in Power Systems
,”
Control Theory Technol.
,
16
(
4
), pp.
336
350
.10.1007/s11768-018-8112-3
25.
Dong
,
L.
, and
Avanesian
,
D.
,
2009
, “
Drive-Mode Control for Vibrational MEMS Gyroscopes
,”
IEEE Trans. Ind. Electron.
,
56
(
4
), pp.
956
963
.10.1109/TIE.2008.2010088
26.
Kandula
,
P.
, and
Dong
,
L.
,
2018
, “
Robust Voltage Control for an Electrostatic Micro-Actuator
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
6
), pp.
663
669
.10.1115/1.4038493
27.
Richer
,
E.
, and
Hurmuzlu
,
Y.
,
2000
, “
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
3
), pp.
416
425
.10.1115/1.1286336
28.
Liu
,
S.
, and
Bobrow
,
J. E.
,
1988
, “
An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
110
(
3
), pp.
228
235
.10.1115/1.3152676
29.
Beater
,
P.
,
2007
,
Pneumatic Drives—System Design, Modelling, and Control
,
Springer-Verlag
,
Berlin/New York
.
30.
Yin
,
Y.
,
2019
,
High Speed Pneumatic Theory and Technology Volume I: Servo System
,
Springer
,
Singapore
.
31.
Li
,
B.
,
Gao
,
L.
, and
Yang
,
G.
,
2013
, “
Modeling and Control of a Novel High-Pressure Pneumatic Servo Valve Direct-Driven by Voice Coil Motor
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
014507
.10.1115/1.4007702
32.
Guo
,
B.
, and
Zhao
,
Z.
,
2011
, “
On the Convergence of an Extended State Observer for Nonlinear Systems With Uncertainty
,”
Syst. Control Lett.
,
60
(
6
), pp.
420
430
.10.1016/j.sysconle.2011.03.008
33.
Shao
,
S.
, and
Gao
,
Z.
,
2017
, “
On the Conditions of Exponential Stability in Active Disturbance Rejection Control Based on Singular Perturbation Analysis
,”
Int. J. Control
,
90
(
10
), pp.
2085
2097
.10.1080/00207179.2016.1236217
34.
Zhao
,
Z.
, and
Guo
,
B.
,
2016
, “
On Convergence of Nonlinear Active Disturbance Rejection Control for SISO Nonlinear Systems
,”
J. Dyn. Control Syst.
,
22
(
2
), pp.
385
412
.10.1007/s10883-015-9304-5
35.
Slotine
,
J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.