Abstract

Focusing on the collaborative fuel supply and acceleration problem of multicombustor turbine engine, a variable geometry composite regulation acceleration control law design method based on the combination of compressor intermediate stage air bleed (CIB) and low-pressure turbine guide vanes (LTGV) is proposed. The multicombustor collaborative fuel supply law and variable geometry regulation law during acceleration process are obtained by Particle Swarm Optimization-Sequence Quadratic Program (PSO-SQP) optimization, and the composite regulation acceleration control strategy of dual/single combustion chamber idle acceleration process is explored. The multicombustor acceleration process simulation results indicate that the variable geometry composite regulation method can effectively alleviate the stability margin limitation of the compressor during the initial acceleration stage. Compared with conventional acceleration methods, the maximum relative reduction in acceleration time of our method reaches 26%; enhancing the combustion exergy efficiency during the acceleration process can significantly improve the engine's acceleration performance. For the acceleration process from single combustion chamber idle operation to normal operation of a dual combustion chamber, simultaneous fuel supply from both combustion chambers during acceleration has a shorter acceleration time. The research results of this paper can provide important references for the design of transition state control systems for multicombustor turbine engines.

References

1.
Sziroczak
,
D.
, and
Smith
,
H.
,
2016
, “
A Review of Design Issues Specific to Hypersonic Flight Vehicles
,”
Prog. Aerosp. Sci.
,
84
, pp.
1
28
.10.1016/j.paerosci.2016.04.001
2.
Jia, X., Zhou, D., Wei, X., et al., 2023, “A novel performance analysis framework for adaptive cycle engine variable geometry components based on topological sorting with rules,”
Aerosp. Sci. Technol.
, 141, p. 108579.10.1016/j.ast.2023.108579
3.
Mamplata
,
C.
, and
Tang
,
M.
,
2009
, “
Technical Approach to Turbine-Based Combined Cycle: FaCET
,”
AIAA
Paper No. 2009-5537.10.2514/6.2009-5537
4.
Bartolotta
,
P. A.
, and
McNelis
,
N. B.
, “
High Speed Turbines:De-Velopment of a Turbine Accelerator(RTA) for Space Access
,”
AIAA
Paper No. 2003-6943.10.2514/6.2003-6943
5.
McNelis
,
N.
, and
Bartolotta
,
P.
, “
Revolutionary Turbine Acceler‐Ator(RTA)Demonstrator
,”
AIAA
Paper No. 2005-3250.10.2514/6.2005-3250
6.
Miranda Jose
,
L.
, and
Polanka Marc
,
D.
,
2014
, “
The Use of an Ultra-Compact Combustor as an Inter-Turbine Burner for Improved Engine Performance
,”
AIAA
Paper No. 2014-0458.10.2514/6.2014-0458
7.
Balu
,
S.
,
Hugh
,
T.
,
Briones
,
A.
, and
Zelina
,
J.
,
2009
, “
Effect of Trapped Vortex Combustion With Radial Vane Cavity Arrangements on Predicted Inter-Turbine Burner Performance
,”
AIAA
Paper No. 2009-4603.10.2514/6.2009-4603
8.
Mohammed
,
M.
,
Thornburg
,
H.
,
Sekar
,
B.
, and
Zelina
, J.
,
2006
, “
Performance of an Inter-Turbine Burner (ITB) Concept With Three-Different Vane Cavity Shapes
,”
AIAA
Paper No. 2006-4740.10.2514/6.2006-4740
9.
Deng
,
L.
,
Chen
,
M.
,
Tang
,
H.
, and
Zhang
,
J.
,
2024
, “
Performance Evaluation of Multicombustor Engine for Mach3+-Level Propulsion System
,”
Energy
,
295
, p.
130992
.10.1016/j.energy.2024.130992
10.
Jaw
,
L. C.
, and
Mattingly
,
J. D.
,
2009
,
Aircraft Engine Controls:Design,System Analysis and Health Monitoring
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
11.
Xinhai
,
Z.
,
Jinxin
,
L.
,
Ming
,
L.
,
Jia
,
G.
, and
Zhiping
,
S.
,
2022
, “
Fusion Control of Two Kinds of Control Schedules in Aeroengine Acceleration Process
,”
J. Propul. Technol.
,
43
(
8
), pp.
349
362
.10.13675/j.cnki.tjjs.210169
12.
Lin
,
Z.
, and
Ding
,
F.
,
2010
, “
Acceleration Control Law Optimization in Aero Engine Based on SQP
,”
J. Propul. Technol.
,
31
(
2
), pp.
216
218
.https://link.oversea.cnki.net/doi/10.13675/j.cnki.tjjs.2010.02.024
13.
Ye
,
Y.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2021
, “
Cascade ensemble-RBF-Based Optimization Algorithm for Aero-Engine Transient Control Schedule Design Optimization
,”
Aerosp. Sci. Technol.
,
115
, p.
106779
.10.1016/j.ast.2021.106779
14.
Yifan
,
Y. E.
,
Wang
,
Z.
, and
Zhang
,
X.
,
2021
, “
Sequential Ensemble Optimization Based on General Surrogate Model Prediction Variance and Its Application on Engine Acceleration Schedule Design
,”
Chin. J. Aeronaut.
,
34
(
8
), pp.
16
33
.10.1016/j.cja.2021.03.010
15.
Qiangang
,
Z.
, and
Zhang
,
H.
,
2018
, “
A Global Optimization Control for Turbo-Fan Engine Acceleration Schedule Design
,”
Proc. Inst. Mech. Eng. Part G
,
232
(
2
), pp.
308
316
.10.1177/0954410016683412
16.
Hu
,
Q. K.
, and
Zhao
,
Y. P.
,
2022
, “
Aero-Engine Acceleration Control Using Deep Reinforcement Learning With Phase-Based Reward Function
,”
Proc. Inst. Mech. Eng., Part G
,
236
(
9
), pp.
1878
1894
.10.1177/09544100211046225
17.
Gao
,
W.
,
Zhou
,
X.
,
Pan
,
M.
,
Zhou
,
W.
,
Lu
,
F.
, and
Huang
,
J.
,
2022
, “
Acceleration Control Strategy for Aero-Engines Based on Model-Free Deep Reinforcement Learning Method
,”
Aerosp. Sci. Technol.
,
120
, p.
107248
.10.1016/j.ast.2021.107248
18.
Fang
,
J.
,
Zheng
,
Q.
,
Cai
,
C.
,
Chen
,
H.
, and
Zhang
,
H.
,
2023
, “
Deep Reinforcement Learning Method for Turbofan Engine Acceleration Optimization Problem Within Full Flight Envelope
,”
Aerosp. Sci. Technol.
,
136
, p.
108228
.10.1016/j.ast.2023.108228
19.
Wang
,
Y.
,
Fang
,
J.
,
Song
,
W.
,
Ji
,
C.
,
Zhang
,
H.
, and
Zhao
,
Q.
,
2024
, “
Surge-Elimination Strategy for Aero-Engine Transient Control
,”
ASME J. Dyn. Syst., Meas., Control
,
146
(
4
), p.
041007
.10.1115/1.4064512
20.
Zheng
,
J. C.
,
Luo
,
Y. W.
,
Tang
,
H. L.
, et al.,
2022
, “
Desian Method Research of Mode Switch Transient Control Schedule on Adaptive Cycle Engine
,”
J. Propul. Technol.
,
43
(
11
), pp.
49
58
.https://link.oversea.cnki.net/doi/10.13675/j.cnki.tjjs.210607
21.
Jiang
,
Y. R.
,
Xu
,
Y. H.
,
Zhang
,
J. Y.
, et al.,
2024
, “
Preliminary Performance Research of Rapid Thrust Change Transient Process on an Adaptive Cycle Engine
,”
J. Propul. Technol.
, 45(6), pp.
26
36
.10.13675/j.cnki.tjjs.2307012
22.
Zhen
,
M.
,
Dong
,
X.
,
Liu
,
X.
, and
Tan
,
C.
,
2024
, “
Accelerated Formulation of Optimal Control Law for Adaptive Cycle Engines: A Novel Design Methodology
,”
Aerosp. Sci. Technol.
,
148
, p.
109076
.10.1016/j.ast.2024.109076
23.
Cai
,
C.
,
Wang
,
Y.
,
Chen
,
H.
,
Zheng
,
Q.
, and
Zhang
,
H.
,
2022
, “
Full-Envelope Acceleration Control Method of Turbofan Engine Based on Variable Geometry Compound Adjustment
,”
Aerosp. Sci. Technol.
,
128
, p.
107748
.10.1016/j.ast.2022.107748
24.
Cai
,
C.
,
Chen
,
H.
,
Fang
,
J.
,
Zheng
,
Q.
,
Chen
,
C.
, and
Zhang
,
H.
,
2023
, “
Thermodynamic Analysis of a Novel Precooled Supersonic Turbine Engine Based on Aircraft/Engine Integrated Optimal Design
,”
Energy
,
280
, p.
128161
.10.1016/j.energy.2023.128161
25.
Cai
,
C.
,
Zheng
,
Q.
,
Fang
,
J.
,
Chen
,
H.
,
Chen
,
C.
, and
Zhang
,
H.
,
2023
, “
Performance Assessment for a Novel Supersonic Turbine Engine With Variable Geometry and Fuel Precooled: From Feasibility, Exergy, Thermoeconomic Perspectives
,”
Appl. Therm. Eng.
,
225
, p.
120227
.10.1016/j.applthermaleng.2023.120227
26.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
, “
Gas Turbine Performance
,”
Blackwell Science Limited
,
Oxford, UK
.
You do not currently have access to this content.