Two passive gas flow controllers are presented which provide compensation for variations in ambient temperature and supply pressure. One technique, which provides first-order error compensation, utilizes a choked orifice having its area linearily varied in proportion to a diaphragm deflection. Compensation is achieved by applying upstream pressure to one side of the diaphragm, and by applying a trapped gas pressure proportional to absolute temperature on the other side of the diaphragm. General design relationships are presented, and a prototype unit constructed to control a minute flow rate of high-pressure oxygen is described. A second flow control technique is presented which provides the required nonlinear temperature compensation for flow supplied through a constant-area choked orifice. This is achieved by utilizing a compliant volume of trapped gas to generate a pressure proportional to the square root of absolute temperature. This pressure is used to control the pressure upstream of the choked orifice, thus providing constant flow.

This content is only available via PDF.
You do not currently have access to this content.