Abstract

Lithium-ion batteries have been widely used in renewable energy storage and electric vehicles, and state-of-health (SoH) prediction is critical for battery safety and reliability. Following the standard SoH prediction routine based on charging curves, a human-knowledge-augmented Gaussian process regression (HAGPR) model is proposed by incorporating two promising artificial intelligence techniques, i.e., the Gaussian process regression (GPR) and the adaptive neural fuzzy inference system (ANFIS). Human knowledge on voltage profile during battery degradation is first modeled with an ANFIS for feature extraction that helps reduce the need for physical testing. Then, the ANFIS is integrated with a GPR model to enable SoH prediction. Using a GPR model as the baseline, a comparison study is conducted to demonstrate the advantage of the proposed HAGPR model. It indicates that the proposed HAGPR model can reduce at least 12% root-mean-square error with 31.8% less battery aging testing compared to the GPR model.

References

1.
IEA
,
2020
,
World Energy Outlook 2020
,
OECD
.
2.
IEA
,
2020
,
Global EV Outlook 2020
,
OECD
.
3.
Ghomian
,
T.
, and
Mehraeen
,
S.
,
2019
, “
Survey of Energy Scavenging for Wearable and Implantable Devices
,”
Energy
,
178
, pp.
33
49
.
4.
Mi
,
J.
,
Li
,
Q.
,
Liu
,
M.
,
Li
,
X.
, and
Zuo
,
L.
,
2020
, “
Design, Modelling, and Testing of a Vibration Energy Harvester Using a Novel Half-Wave Mechanical Rectification
,”
Appl. Energy
,
279
, p.
115726
.
5.
Zhang
,
L.
,
Hu
,
X.
,
Wang
,
Z.
,
Ruan
,
J.
,
Ma
,
C.
,
Song
,
Z.
,
Dorrell
,
D. G.
, and
Pecht
,
M. G.
,
2020
, “
Hybrid Electrochemical Energy Storage Systems: An Overview for Smart Grid and Electrified Vehicle Applications
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110581
.
6.
Lissa
,
P.
,
Deane
,
C.
,
Schukat
,
M.
,
Seri
,
F.
,
Keane
,
M.
, and
Barrett
,
E.
,
2021
, “
Deep Reinforcement Learning for Home Energy Management System Control
,”
Energy AI
,
3
, p.
100043
.
7.
Zhou
,
Q.
,
Guo
,
S.
,
Xu
,
L.
,
Guo
,
X.
,
Williams
,
H.
,
Xu
,
H.
, and
Yan
,
F.
,
2021
, “
Global Optimization of the Hydraulic-Electromagnetic Energy-Harvesting Shock Absorber for Road Vehicles with Human-Knowledge-Integrated Particle Swarm Optimization Scheme
,”
IEEE/ASME Trans. Mechatron.
,
4435
(
c
), p.
1
.
8.
Kim
,
T. Y.
,
Kwak
,
J.
, and
Kim
,
B. W.
,
2019
, “
Application of Compact Thermoelectric Generator to Hybrid Electric Vehicle Engine Operating Under Real Vehicle Operating Conditions
,”
Energy Convers. Manag.
,
201
, p.
112150
.
9.
Zhou
,
Q.
,
He
,
Y.
,
Zhao
,
D.
,
Li
,
J.
,
Li
,
Y.
,
Williams
,
H.
, and
Xu
,
H.
,
2020
, “
Modified Particle Swarm Optimization With Chaotic Attraction Strategy for Modular Design of Hybrid Powertrains
,”
IEEE Trans. Transp. Electrif.
, Early ACCE.
10.
Huang
,
Y.
,
Wang
,
H.
,
Khajepour
,
A.
,
Li
,
B.
,
Ji
,
J.
,
Zhao
,
K.
, and
Hu
,
C.
,
2018
, “
A Review of Power Management Strategies and Component Sizing Methods for Hybrid Vehicles
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
132
144
.
11.
Lv
,
C.
,
Hu
,
X.
,
Sangiovanni-Vincentelli
,
A.
,
Li
,
Y.
,
Martinez
,
C. M.
, and
Cao
,
D.
,
2019
, “
Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
2965
2975
.
12.
Xing
,
Y.
, and
Lv
,
C.
,
2019
, “
Dynamic State Estimation for the Advanced Brake System of Electric Vehicles by Using Deep Recurrent Neural Networks
,”
IEEE Trans. Ind. Electron.
,
PP
(
c
), p.
1
.
13.
Teichert
,
O.
,
Chang
,
F.
,
Ongel
,
A.
, and
Lienkamp
,
M.
,
2019
, “
Joint Optimization of Vehicle Battery Pack Capacity & Charging Infrastructure for Electrified Public Bus Systems
,”
IEEE Trans. Transp. Electrif.
,
5
(
3
), pp.
1
1
.
14.
Sun
,
D.
,
Yu
,
X.
,
Wang
,
C.
,
Zhang
,
C.
,
Huang
,
R.
,
Zhou
,
Q.
,
Amietszajew
,
T.
, and
Bhagat
,
R.
,
2021
, “
State of Charge Estimation for Lithium-Ion Battery Based on an Intelligent Adaptive Extended Kalman Filter with Improved Noise Estimator
,”
Energy
,
214
, p.
119025
.
15.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
, and
Panchal
,
S.
,
2020
, “
Numerical Analysis of Different Fin Structures in Phase Change Material Module for Battery Thermal Management System and Its Optimization
,”
Int. J. Heat Mass Transf.
,
163
, p.
120434
.
16.
Jilte
,
R.
,
Afzal
,
A.
, and
Panchal
,
S.
,
2021
, “
A Novel Battery Thermal Management System Using Nano-Enhanced Phase Change Materials
,”
Energy
,
219
, p.
119564
.
17.
Tran
,
M.-K.
,
Akinsanya
,
M.
,
Panchal
,
S.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2020
, “
Design of a Hybrid Electric Vehicle Powertrain for Performance Optimization Considering Various Powertrain Components and Configurations
,”
Vehicles
,
3
(
1
), pp.
20
32
.
18.
Zhou
,
Q.
,
Zhang
,
W.
,
Cash
,
S.
,
Olatunbosun
,
O.
,
Xu
,
H.
, and
Lu
,
G.
,
2017
, “
Intelligent Sizing of a Series Hybrid Electric Power-Train System Based on Chaos-Enhanced Accelerated Particle Swarm Optimization
,”
Appl. Energy
,
189
, pp.
588
601
.
19.
Shuai
,
B.
,
Zhou
,
Q.
,
Li
,
J.
,
He
,
Y.
,
Li
,
Z.
,
Williams
,
H.
,
Xu
,
H.
, and
Shuai
,
S.
,
2020
, “
Heuristic Action Execution for Energy Efficient Charge-Sustaining Control of Connected Hybrid Vehicles with Model-Free Double Q-Learning
,”
Appl. Energy
,
267
, p.
114900
.
20.
Zhou
,
Q.
,
Zhang
,
Y.
,
Li
,
Z.
,
Li
,
J.
,
Xu
,
H.
, and
Olatunbosun
,
O.
,
2018
, “
Cyber-Physical Energy-Saving Control for Hybrid Aircraft-Towing Tractor Based on Online Swarm Intelligent Programming
,”
IEEE Trans. Industr. Inform.
,
14
(
9
), pp.
4149
4158
.
21.
Zhou
,
Y.
,
Ravey
,
A.
, and
Péra
,
M.
,
2019
, “
A Survey on Driving Prediction Techniques for Predictive Energymanagement of Plug-in Hybrid Electric Vehicles
,”
J. Power Sources
,
412
, pp.
480
495
.
22.
He
,
Y.
,
Zhou
,
Q.
,
Makridis
,
M.
,
Mattas
,
K.
,
Li
,
J.
,
Williams
,
H.
, and
Xu
,
H.
,
2020
, “
Multiobjective Co-Optimization of Cooperative Adaptive Cruise Control and Energy Management Strategy for PHEVs
,”
IEEE Trans. Transp. Electrif.
,
6
(
1
), pp.
346
355
.
23.
Pastor-Fernández
,
C.
,
Yu
,
T. F.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2019
, “
Critical Review of Non-Invasive Diagnosis Techniques for Quantification of Degradation Modes in Lithium-Ion Batteries
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
138
159
.
24.
Xiong
,
R.
,
Pan
,
Y.
,
Shen
,
W.
,
Li
,
H.
, and
Sun
,
F.
,
2020
, “
Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives
,”
Renewable Sustainable Energy Rev.
,
131
(
5
), p.
110048
.
25.
Birkl
,
C. R.
,
Roberts
,
M. R.
,
McTurk
,
E.
,
Bruce
,
P. G.
, and
Howey
,
D. A.
,
2017
, “
Degradation Diagnostics for Lithium Ion Cells
,”
J. Power Sources
,
341
, pp.
373
386
.
26.
Mevawalla
,
A.
,
Panchal
,
S.
,
Tran
,
M. K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2020
, “
Mathematical Heat Transfer Modeling and Experimental Validation of Lithium-Ion Battery Considering: Tab and Surface Temperature, Separator, Electrolyte Resistance, Anode-Cathode Irreversible and Reversible Heat
,”
Batteries
,
6
(
4
), pp.
1
26
.
27.
Nuhic
,
A.
,
Terzimehic
,
T.
,
Soczka-Guth
,
T.
,
Buchholz
,
M.
, and
Dietmayer
,
K.
,
2013
, “
Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods
,”
J. Power Sources
,
239
, pp.
680
688
.
28.
Hu
,
C.
,
Jain
,
G.
,
Schmidt
,
C.
,
Strief
,
C.
, and
Sullivan
,
M.
,
2015
, “
Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning
,”
J. Power Sources
,
289
, pp.
105
113
.
29.
Garg
,
A.
,
Shaosen
,
S.
,
Gao
,
L.
,
Peng
,
X.
, and
Baredar
,
P.
,
2020
, “
Aging Model Development Based on Multidisciplinary Parameters for Lithium-Ion Batteries
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2801
2818
.
30.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2016
, “
Experimental and Theoretical Investigations of Heat Generation Rates for a Water Cooled LiFePO4 Battery
,”
Int. J. Heat Mass Transf.
,
101
, pp.
1093
1102
.
31.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
.
32.
Liu
,
D.
,
Pang
,
J.
,
Zhou
,
J.
,
Peng
,
Y.
, and
Pecht
,
M.
,
2013
, “
Prognostics for State of Health Estimation of Lithium-Ion Batteries Based on Combination Gaussian Process Functional Regression
,”
Microelectron. Reliab.
,
53
(
6
), pp.
832
839
.
33.
Li
,
F.
, and
Xu
,
J.
,
2015
, “
A New Prognostics Method for State of Health Estimation of Lithium-Ion Batteries Based on a Mixture of Gaussian Process Models and Particle Filter
,”
Microelectron. Reliab.
,
55
(
7
), pp.
1035
1045
.
34.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2017
, “
Gaussian Process Regression for Forecasting Battery State of Health
,”
J. Power Sources
,
357
, pp.
209
219
.
35.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
, pp.
387
395
.
36.
Tagade
,
P.
,
Hariharan
,
K. S.
,
Ramachandran
,
S.
,
Khandelwal
,
A.
,
Naha
,
A.
,
Kolake
,
S. M.
, and
Han
,
S. H.
,
2020
, “
Deep Gaussian Process Regression for Lithium-Ion Battery Health Prognosis and Degradation Mode Diagnosis
,”
J. Power Sources
,
445
, p.
227281
.
37.
Li
,
J.
,
Zhou
,
Q.
,
He
,
Y.
,
Williams
,
H.
, and
Xu
,
H.
,
2020
, “
Driver-Identified Supervisory Control System of Hybrid Electric Vehicles Based on Spectrum-Guided Fuzzy Feature Extraction
,”
IEEE Trans. Fuzzy Syst.
,
28
(
11
), pp.
2691
2701
.
38.
Ashok Kumar
,
P. M.
, and
Vaidehi
,
V.
,
2017
, “
A Transfer Learning Framework for Traffic Video Using Neuro-Fuzzy Approach
,”
Sadhana
,
42
(
9
), pp.
1431
1442
.
39.
Saha
,
B.
, and
Goebel
,
K.
,
2007
,
Battery Data Set
,
NASA Ames Prognostics Data Repository
,
Moffett Field, CA
.
40.
Cervantes
,
J.
,
Yu
,
W.
,
Salazar
,
S.
, and
Chairez
,
I.
,
2017
, “
Takagi-Sugeno Dynamic Neuro-Fuzzy Controller of Uncertain Nonlinear Systems
,”
IEEE Trans. Fuzzy Syst.
,
25
(
6
), pp.
1601
1615
.
41.
Lv
,
C.
,
Xing
,
Y.
,
Lu
,
C.
,
Liu
,
Y.
,
Guo
,
H.
,
Gao
,
H.
, and
Cao
,
D.
,
2018
, “
Hybrid-Learning-Based Classification and Quantitative Inference of Driver Braking Intensity of an Electrified Vehicle
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5718
5729
.
You do not currently have access to this content.