An investigation of water transport across the membrane of a proton exchange membrane fuel cell is performed to gain further insight into water management issues and the overall behavior of a representative phenomenological model. The model accounts for water transport via electro-osmotic drag and diffusion and is solved using a finite volume method for a one-dimensional isothermal system. Transport properties including the water drag and diffusion coefficients and membrane ionic conductivity are expressed as functions of water content and temperature. An analytical solution based on a generalized form of the transport properties is also derived and used to validate the numerical solutions. The effects of property variations on the water flux across the membrane and on the overall membrane protonic conductivity are analyzed. The balance between transport via electro-osmotic drag and diffusion depends not only on operating conditions, such as current density and relative humidity at the membrane boundaries, but also on design parameters, such as membrane thickness and membrane material. Computed water fluxes for different humidity boundary conditions indicate that for a thick membrane (e.g., Nafion 117), electro-osmotic drag dominates the transport over a wide range of operating conditions, whereas for a thin membrane (e.g., Nafion 112), diffusion of water becomes equally important under certain humidification conditions and current densities. Implications for the resolution of membrane transport in CFD-based models of proton exchange membrane fuel cells are also discussed.

1.
Weber
,
A. Z.
, and
Newman
,
J.
, 2003, “
Transport in Polymer-Electrolyte Membranes—I. Physical Model
,”
J. Electrochem. Soc.
0013-4651
150
(
7
), pp.
A1008
A1015
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1992, “
A Mathematical-Model of the Solid-Polymer-Electrolyte Fuel-Cell
,”
J. Electrochem. Soc.
0013-4651
139
(
9
), pp.
2477
2491
.
3.
Gurau
,
V.
,
Liu
,
H. T.
, and
Kakac
,
S.
, 1998, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
0001-1541
44
(
11
), pp.
2410
2422
.
4.
Eikerling
,
M.
Kharkats
,
M Y. I.
,
Kornyshev
,
A. A.
, and
Volfkovich
,
Y. M.
, 1998, “
Phenomenological Theory of Electro-Osmotic Effect and Water Management in Polymer Electrolyte Proton-Conducting Membranes
,”
J. Electrochem. Soc.
0013-4651
145
(
8
), pp.
2684
2699
.
5.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
, 1999, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
0020-7225
37
, pp.
431
452
.
6.
Berning
,
T.
and
Djilali
,
N.
, 2003, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell - A Parametric Study
,”
J. Power Sources
0378-7753
124
(
2
), pp.
440
452
.
7.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel-Cell Model
,”
J. Electrochem. Soc.
0013-4651
138
(
8
), pp.
2334
2342
.
8.
Fuller
,
T. F.
and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651
140
(
5
), pp.
1218
1225
.
9.
Nguyen
,
T. V.
and
White
,
R. E.
, 1993, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel-Cells
,”
J. Electrochem. Soc.
0013-4651
140
(
8
), pp.
2178
2186
.
10.
Janssen
,
G. J. M.
, 2001, “
A Phenomenological Model of Water Transport in a Proton Exchange Membrane Fuel Cell
,”
J. Electrochem. Soc.
0013-4651
148
(
12
), pp.
A1313
1323
.
11.
Dutta
,
S.
,
Shimpalee S
,
S.
, and
Van Zee
,
J. W.
, 2001, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310
44
(
11
), pp.
2029
2042
.
12.
Siegel
,
N. P.
,
Ellis
,
M. W.
,
Nelson
,
D. J.
, and
von Spakovsky
,
M. R.
, 2003, “
Single Domain PEMFC Model Based on Agglomerate Catalyst Geometry
,”
J. Power Sources
0378-7753
115
(
1
), pp.
81
89
.
13.
Kulikovsky
,
A. A.
, 2003, “
Quasi-3D Modeling of Water Transport in Polymer Electrolyte Fuel Cells
,
J. Electrochem. Soc.
0013-4651
150
(
11
), pp.
A1432
A1439
.
14.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
C. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651
147
(
12
), pp.
4485
4493
.
15.
Um
,
S.
and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reaction in Polymer Electrolyte Fuel Cells
,
J. Power Sources
0378-7753
125
, pp.
40
51
.
16.
Mazumder
,
S.
and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells - II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
0013-4651
150
(
11
), pp.
A1510
A1517
.
17.
Li
,
S. P.
,
Becker
,
U.
,
Makarov
,
B.
, and
Orsino
,
S.
, 2003, “
CFD Modeling of PEMFC—Theory and Case Studies
,”
Fuel Cell Seminars
, Miami Beach, FL.
18.
Zawodzinski
,
T. A.
,
Springer
,
T. E.
,
Davey
,
J.
,
Jestel
,
R.
,
Lopez
,
C.
,
Valerio
,
J.
, and
Gottesfeld
,
S.
, 1993, “
A Comparative-Study of Water-Uptake by and Transport Through Ionomeric Fuel-Cell Membranes
,”
J. Electrochem. Soc.
0013-4651
140
(
7
), pp.
1981
1985
.
19.
Motupally
,
S.
,
Becker
,
A. J.
, and
Weidner
,
J. W.
, 2000, “
Diffusion of Water in Nafion 115 Membranes
,”
J. Electrochem. Soc.
0013-4651
147
(
9
), pp.
3171
3177
.
20.
Sone
,
Y.
,
Ekdunge
,
P.
, and
Simonsson
,
D.
, 1996, “
Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method
,”
J. Electrochem. Soc.
0013-4651
143
(
4
), pp.
1254
1259
.
21.
De Francesco
,
M.
,
Arato
,
E.
, and
Costa
,
P.
, 2004, “
Transport Phenomena in Membranes for PEMFC Applications: An Analytical Approach to the Calculation of Membrane Resistance
,
J. Power Sources
0378-7753
132
, pp.
127
134
.
You do not currently have access to this content.