Abstract

The generation of heat within the rechargeable batteries during the charge–discharge cycles is inevitable, making heat dissipation a very critical part of their design and operation procedure, as a safety and sustainability measure. In particular, when the heat gets the least possibility to escape from the electrode surface, the boundary of the packaging material remains the sole heat dissipator. In this regard, the heat gets accumulated in the central zone, making it the most critical, since it has the least possibility to escape to the surroundings. Anticipating such a heat trap, a central heat sink component is devised, where the role of its conductivity and the relative scale is analyzed based on the formation of transient and steady-state temperature profiles. Additionally, an analytical solution is attained for the location of the maximum temperature, where its value and correlation with the electrolyte conductivity, heat generation rate, and scale of the cell have been quantified. Due to the existence of the curved boundaries, it is shown that the time versus space resolution for capturing the transient evolution of the temperature is more strict than the flat surface and analytically acquired as ≈33% smaller value. Such enhanced design and subsequent analysis are critical for planning sustainable and cost-effective packaging to avoid the ignition and failure of the respective electrolyte.

References

1.
Shalf
,
J.
,
2020
, “
The Future of Computing Beyond Moores Law
,”
Philos. Trans. R. Soc. A
,
378
(
2166
), p.
20190061
.
2.
Tollefson
,
J.
,
2008
, “
Charging up the Future: A New Generation of Lithium-Ion Batteries, Coupled With Rising Oil Prices and the Need to Address Climate Change, Has Sparked a Global Race to Electrify Transportation
,”
Nature
,
456
(
7221
), pp.
436
441
.
3.
Flipsen
,
S. F. J.
,
2006
, “
Power Sources Compared: The Ultimate Truth?
,”
J. Power Sources
,
162
(
2
), pp.
927
934
.
4.
Crabtree
,
G.
,
Kócs
,
E.
, and
Trahey
,
L.
,
2015
, “
The Energy-Storage Frontier: Lithium-Ion Batteries and Beyond
,”
MRS Bull.
,
40
(
12
), pp.
1067
1078
.
5.
Hall
,
P. J.
, and
Bain
,
E. J.
,
2008
, “
Energy-Storage Technologies and Electricity Generation
,”
Energy Policy
,
36
(
12
), pp.
4352
4355
.
6.
Ouyang
,
D.
,
Chen
,
M.
,
Huang
,
Q.
,
Weng
,
J.
,
Wang
,
Z.
, and
Wang
,
J.
,
2019
, “
A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures
,”
Appl. Sci.
,
9
(
12
), p.
2483
.
7.
Xu
,
X. M.
, and
He
,
R.
,
2014
, “
Review on the Heat Dissipation Performance of Battery Pack With Different Structures and Operation Conditions
,”
Renew. Sustainable Energy Rev.
,
29
, pp.
301
315
.
8.
Liu
,
X.
,
Stoliarov
,
S. I.
,
Denlinger
,
M.
,
Masias
,
A.
, and
Snyder
,
K.
,
2015
, “
Comprehensive Calorimetry of the Thermally-Induced Failure of a Lithium ion Battery
,”
J. Power Sources
,
280
, pp.
516
525
.
9.
Fu
,
Y.
,
Lu
,
S.
,
Li
,
K.
,
Liu
,
C.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2015
, “
An Experimental Study on Burning Behaviors of 18650 Lithium Ion Batteries Using a Cone Calorimeter
,”
J. Power Sources
,
273
, pp.
216
222
.
10.
Jin
,
C.
,
Sun
,
Y.
,
Wang
,
H.
,
Lai
,
X.
,
Wang
,
S.
,
Chen
,
S.
,
Rui
,
X.
,
Zheng
,
Y.
,
Feng
,
X.
,
Wang
,
H.
, et al
,
2021
, “
Model and Experiments to Investigate Thermal Runaway Characterization of Lithium-Ion Batteries Induced by External Heating Method
,”
J. Power Sources
,
504
, p.
230065
.
11.
Lei
,
Z.
,
Maotao
,
Z.
,
Xiaoming
,
X.
, and
Junkui
,
G.
,
2019
, “
Thermal Runaway Characteristics on NCM Lithium-Ion Batteries Triggered by Local Heating Under Different Heat Dissipation Conditions
,”
Appl. Therm. Eng.
,
159
, p.
113847
.
12.
Liang
,
C.
,
Jiang
,
L.
,
Ye
,
S.
,
Wang
,
Z.
,
Wei
,
Z.
,
Wang
,
Q.
, and
Sun
,
J.
,
2021
, “
Precise In-Situ and Ex-Situ Study on Thermal Behavior of lini1/3co1/3mn1/3o2/Graphite Coin Cell: From Part to the Whole Cell
,”
J. Energy Chem.
,
54
, pp.
332
341
.
13.
Leising
,
R. A.
,
Palazzo
,
M. J.
,
Takeuchi
,
E. S.
, and
Takeuchi
,
K. J.
,
2001
, “
A Study of the Overcharge Reaction of Lithium-Ion Batteries
,”
J. Power Sources
,
97
, pp.
681
683
.
14.
Strobridge
,
F. C.
,
Orvananos
,
B.
,
Croft
,
M.
,
Yu
,
H.-C.
,
Robert
,
R.
,
Liu
,
H.
,
Zhong
,
Z.
,
Connolley
,
T.
,
Drakopoulos
,
M.
,
Thornton
,
K.
, et al
,
2015
, “
Mapping the Inhomogeneous Electrochemical Reaction Through Porous lifepo4-Electrodes in a Standard Coin Cell Battery
,”
Chem. Mater.
,
27
(
7
), pp.
2374
2386
.
15.
Park
,
S.
,
Savvides
,
A.
, and
Srivastava
,
M. B.
,
2001
, “
Battery Capacity Measurement and Analysis Using Lithium Coin Cell Battery
,”
ISLPED’01: Proceedings of the 2001 International Symposium on Low Power Electronics and Design (IEEE Cat. No. 01TH8581)
,
Huntington Beach, CA
,
Aug. 6–7
, IEEE, pp.
382
387
.
16.
Zhang
,
J.
, and
Lu
,
W.
,
2022
, “
Sparse Data Machine Learning for Battery Health Estimation and Optimal Design Incorporating Material Characteristics
,”
Appl. Energy
,
307
, p.
118165
.
17.
Zhang
,
Y.
, and
Harb
,
J. N.
,
2013
, “
Performance Characteristics of Lithium Coin Cells for Use in Wireless Sensing Systems: Transient Behavior During Pulse Discharge
,”
J. Power Sources
,
229
, pp.
299
307
.
18.
Liang
,
C.
,
Jiang
,
L.
,
Ye
,
S.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
Comprehensive Analysis on Dynamic Heat Generation of lini1/3co1/3mn1/3o2 Coin Cell Under Overcharge
,”
J. Electrochem. Soc.
,
166
(
14
), pp.
A3369
A3376
.
19.
Rodrigues
,
M.-T. F.
,
Kalaga
,
K.
,
Gullapalli
,
H.
,
Babu
,
G.
,
Mohana Reddy
,
A. L.
, and
Ajayan
,
P. M.
,
2016
, “
Hexagonal Boron Nitride-Based Electrolyte Composite for Li-Ion Battery Operation From Room Temperature to 150° c
,”
Adv. Energy Mater.
,
6
(
12
), p.
1600218
.
20.
Fayaz
,
H.
,
Afzal
,
A.
,
Samee
,
A. D. M.
,
Soudagar
,
M. E. M.
,
Akram
,
N.
,
Mu- jtaba
,
M. A.
,
Jilte
,
R. D.
,
Islam
,
M. T.
,
Ağbulut
,
Ü.
, and
Sasleel
,
C. A.
,
2022
, “
Optimization of Thermal and Structural Design in Lithium-Ion Batteries to Obtain Energy Efficient Battery Thermal Management System (Btms): A Critical Review
,”
Archiv. Comput. Methods Eng.
,
29
(
1
), pp.
129
194
.
21.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.
22.
Wu
,
M.-S.
,
Liu
,
K. H.
,
Wang
,
Y.-Y.
, and
Wan
,
C.-C.
,
2002
, “
Heat Dissipation Design for Lithium-Ion Batteries
,”
J. Power Sources
,
109
(
1
), pp.
160
166
.
23.
Wang
,
P.
,
Xinyi Zhang
,
L. Y.
,
Zhang
,
X.
,
Yang
,
M.
,
Chen
,
H.
, and
Fang
,
D.
,
2016
, “
Real-Time Monitoring of Internal Temperature Evolution of the Lithium-Ion Coin Cell Battery During the Charge and Discharge Process
,”
Extrem. Mech. Lett.
,
9
, pp.
459
466
.
24.
Yang
,
Y.
,
Okonkwo
,
E. G.
,
Huang
,
G.
,
Xu
,
S.
,
Sun
,
W.
, and
He
,
Y.
,
2021
, “
On the Sustainability of Lithium Ion Battery Industry–A Review and Perspective
,”
Energy Storage Mater.
,
36
, pp.
186
212
.
25.
Sarkar
,
D.
,
Shah
,
K.
,
Haji-Sheikh
,
A.
, and
Jain
,
A.
,
2014
, “
Analytical Modeling of Temperature Distribution in an Anisotropic Cylinder With Circumferentially-Varying Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1027
1033
.
26.
Anthony
,
D.
,
Sarkar
,
D.
, and
Jain
,
A.
,
2016
, “
Non-Invasive, Transient Determination of the Core Temperature of a Heat-Generating Solid Body
,”
Sci. Rep.
,
6
(
1
), pp.
1
10
. URL: http://doi.org/10.1038/srep35886.
27.
Zhou
,
L.
,
Parhizi
,
M.
, and
Jain
,
A.
,
2021
, “
Temperature Distribution in a Multi-Layer Cylinder With Circumferentially-Varying Convective Heat Transfer Boundary Conditions
,”
Int. J. Therm. Sci.
,
160
, p.
106673
.
28.
Bernagozzi
,
M.
,
Georgoulas
,
A.
,
Miche
,
N.
, and
Marengo
,
M.
,
2022
, “
Heat Pipes in Battery Thermal Management Systems for Electric Vehicles: A Critical Review
,”
Appl. Therm. Eng.
,
219
, Part A, p.
119495
.
29.
Wang
,
Y.
,
Dan
,
D.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Panchal
,
S.
,
Fowler
,
M.
,
Li
,
W.
,
Tran
,
M.-K.
, and
Xie
,
Y.
,
2022
, “
A Novel Heat Dissipation Structure Based on Flat Heat Pipe for Battery Thermal Management System
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15961
15980
.
30.
Han
,
X.
,
Wang
,
X.
,
Zheng
,
H.
,
Xu
,
X.
, and
Chen
,
G.
,
2016
, “
Review of the Development of Pulsating Heat Pipe for Heat Dissipation
,”
Renew. Sustainable Energy Rev.
,
59
, pp.
692
709
.
31.
Patil
,
M. S.
,
Seo
,
J.-H.
,
Panchal
,
S.
, and
Lee
,
M.-Y.
,
2021
, “
Numerical Study on Sensitivity Analysis of Factors Influencing Liquid Cooling With Double Cold-Plate for Lithium-Ion Pouch Cell
,”
Int. J. Energy Res.
,
45
(
2
), pp.
2533
2559
.
32.
Duan
,
J.
,
Zhao
,
J.
,
Li
,
X.
,
Panchal
,
S.
,
Yuan
,
J.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2021
, “
Modeling and Analysis of Heat Dissipation for Liquid Cooling Lithium-Ion Batteries
,”
Energies
,
14
(
14
), p.
4187
.
33.
Choudhari
,
V. G.
,
Dhoble
,
A. S.
, and
Panchal
,
S.
,
2020
, “
Numerical Analysis of Different fin Structures in Phase Change Material Module for Battery Thermal Management System and Its Optimization
,”
Int. J. Heat Mass Transfer
,
163
, p.
120434
.
34.
Bonnick
,
P.
, and
Dahn
,
J. R.
,
2012
, “
A Simple Coin Cell Design for Testing Rechargeable Zinc-Air or Alkaline Battery Systems
,”
J. Electrochem. Soc.
,
159
(
7
), pp.
A981
A989
.
35.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
36.
Samimi
,
F.
,
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2016
, “
Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded With Carbon Fibers
,”
Energy
,
96
, pp.
355
371
.
37.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, et al
,
1996
,
Fundamentals of Heat and Mass Transfer
, 6th Ed.,
Wiley
,
New York
.
38.
Shaughnessy
,
E. J.
,
Katz
,
I. M.
, and
Schaffer
,
J. P.
,
2005
,
Introduction to Fluid Mechanics, Volume 8
,
Oxford University Press
,
New York
.
39.
Logan
,
E. R.
,
Tonita
,
E. M.
,
Gering
,
K. L.
,
Ma
,
L.
,
Bauer
,
M. K. G.
,
Li
,
J.
,
Beaulieu
,
L. Y.
, and
Dahn
,
J. R.
,
2018
, “
A Study of the Transport Properties of Ethylene Carbonate-Free Li Electrolytes
,”
J. Electrochem. Soc.
,
165
(
3
), pp.
A705
A716
.
40.
Aryanfar
,
A.
,
Medlej
,
S.
, and
Goddard III
,
W. A.
,
2021
, “
Morphometry of Dendritic Materials in Rechargeable Batteries
,”
J. Power Sources
,
481
, p.
228914
.
41.
Shannon
,
R. D.
,
1976
, “
Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
,”
Acta Crystallogr. Sect., A
,
32
(
5
), pp.
751
767
.
42.
Orsini
,
F.
,
Pasquier
,
A. D.
,
Beaudoin
,
B.
, and
Tarascon
,
J. M.
,
1998
, “
In Situ Scanning Electron Microscopy (SEM) Observation of Interfaces With Plastic Lithium Batteries
,”
J. Power Sources
,
76
(
1
), pp.
19
29
.
43.
Lemmon
,
E. W.
,
Huber
,
M. L.
,
McLinden
,
M. O.
, et al
Nist Standard Reference Database 23. Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version, 9, 2010.
44.
Hess
,
S.
,
Wohlfahrt-Mehrens
,
M.
, and
Wachtler
,
M.
,
2015
, “
Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements
,”
J. Electrochem. Soc.
,
162
(
2
), pp.
A3084
A3097
.
45.
Narayanan
,
S. R.
,
Surampudi
,
S.
,
Attia
,
A. I.
, and
Bankston
,
C. P.
,
1991
, “
Analysis of Redox Additive-Based Overcharge Protection for Rechargeable Lithium Batteries
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2224
2229
.
46.
Aryanfar
,
A.
,
Brooks
,
D.
,
Merinov
,
B. V.
,
Goddard Iii
,
W. A.
,
Colussi
,
A. J.
, and
Hoffmann
,
M. R.
,
2014
, “
Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations
,”
J. Phys. Chem. Lett.
,
5
(
10
), pp.
1721
1726
.
47.
Johnson
,
P. H.
,
1985
,
The Properties of Ethylene Carbonate and Its Use in Electrochemical Applications: A Literature Review
,
Lawrence Berkeley National Laboratory
,
Berkeley, CA
, p.
19886
.
48.
Weaver
,
J. H.
, and
Frederikse
,
H. P. R.
,
1977
,
CRC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
,
12
156
, 76.
49.
Byron Bird
,
R.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
John Wiley and Sons
,
New York
.
50.
Aryanfar
,
A.
Method and Device for Dendrite Research and Discovery in Batteries, April 11, 2017. US Patent No. 9,620,808.
You do not currently have access to this content.