Abstract

Short-circuit failure is one of the triggers for thermal runaway of lithium-ion batteries, which can lead to serious safety issues. This paper attempts to estimate the short-circuit resistance of the cell using the mean difference model and relies on the estimated results to make a quantitative analysis of short-circuit fault. To achieve this goal, a combination of forgetting factor recursive least squares and extended Kalman filter is used to estimate the average open-circuit voltage within the battery pack. Subsequently, since both the open-circuit voltage (OCV) and intrinsic mode function (IMF0) components reflect the low-frequency characteristics of the battery voltage, we propose a new method based on the variational modal decomposition to extract the differential open-circuit voltage of the battery and finally make an estimate of the short-circuit resistance after obtaining OCV of the battery using the idea of the mean difference model (MDM). In addition, the effectiveness of the proposed method is verified under different degrees of short-circuit faults by connecting different resistors to the series battery pack.

References

1.
Vikström
,
H.
,
Davidsson
,
S.
, and
Höök
,
M.
,
2013
, “
Lithium Availability and Future Production Outlooks
,”
Appl. Energy
,
110
, pp.
252
266
.
2.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
3.
Gao
,
W.
,
Li
,
X.
,
Ma
,
M.
,
Fu
,
Y.
,
Jiang
,
J.
, and
Mi
,
C.
,
2021
, “
Case Study of an Electric Vehicle Battery Thermal Runaway and Online Internal Short-Circuit Detection
,”
IEEE Trans. Power Electron.
,
36
(
3
), pp.
2452
2455
.
4.
Ma
,
M.
,
Wang
,
Y.
,
Duan
,
Q.
,
Wu
,
T.
,
Sun
,
J.
, and
Wang
,
Q.
,
2018
, “
Fault Detection of the Connection of Lithium-Ion Power Batteries in Series for Electric Vehicles Based on Statistical Analysis
,”
Energy
,
164
, pp.
745
756
.
5.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
.
6.
Zheng
,
S.
,
Wang
,
L.
,
Feng
,
X.
, and
He
,
X.
,
2018
, “
Probing the Heat Sources During Thermal Runaway Process by Thermal Analysis of Different Battery Chemistries
,”
J. Power Sources
,
378
, pp.
527
536
.
7.
Garche
,
J.
, and
Jossen
,
A.
,
2015
, “
Monitoring and Safety Tests of Batteries: From State of Charge (SOC) and Health (SOH) to Misuse, Abuse and Crash
,”
AIP Conference Proceedings
,
Freiberg, Germany
,
June 11–12
, p.
020005
.
8.
Ji
,
H.
,
Chung
,
Y.-H.
,
Pan
,
X.-H.
,
Hua
,
M.
,
Shu
,
C.-M.
, and
Zhang
,
L.-J.
,
2021
, “
Study of Lithium-Ion Battery Module’s External Short Circuit Under Different Temperatures
,”
J. Therm. Anal. Calorim.
,
144
(
3
), pp.
1065
1072
.
9.
Ma
,
M.
,
Duan
,
Q.
,
Li
,
X.
,
Liu
,
J.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2021
, “
Fault Diagnosis of External Soft-Short Circuit for Series Connected Lithium-Ion Battery Pack Based on Modified Dual Extended Kalman Filter
,”
J. Energy Storage
,
41
, p.
102902
.
10.
Xu
,
J.
,
Wang
,
H.
,
Shi
,
H.
, and
Mei
,
X.
,
2020
, “
Multi-Scale Short Circuit Resistance Estimation Method for Series Connected Battery Strings
,”
Energy
,
202
, p.
117647
.
11.
Feng
,
X.
,
Pan
,
Y.
,
He
,
X.
,
Wang
,
L.
, and
Ouyang
,
M.
,
2018
, “
Detecting the Internal Short Circuit in Large-Format Lithium-Ion Battery Using Model-Based Fault-Diagnosis Algorithm
,”
J. Energy Storage
,
18
, pp.
26
39
.
12.
Seo
,
M.
,
Goh
,
T.
,
Park
,
M.
, and
Kim
,
S.
,
2018
, “
Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell
,”
Energies
,
11
(
7
), p.
1669
.
13.
Zhang
,
X.
,
Sahraei
,
E.
,
Wang
,
K.
, and
Separators
,
L.-i. B.
,
2016
, “
Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
,”
Sci. Rep.
,
6
(
1
), p.
32578
.
14.
Chen
,
Z.
,
Xiong
,
R.
,
Lu
,
J.
, and
Li
,
X.
,
2018
, “
Temperature Rise Prediction of Lithium-Ion Battery Suffering External Short Circuit for All-Climate Electric Vehicles Application
,”
Appl. Energy
,
213
, pp.
375
383
.
15.
Xia
,
B.
,
Mi
,
C.
,
Chen
,
Z.
, and
Robert
,
B.
,
2015
, “
Multiple Cell Lithium-Ion Battery System Electric Fault Online Diagnostics
,”
Proceedings of the 2015 IEEE Transportation Electrification Conference and Expo (ITEC)
,
Dearborn, MI
,
June 14–17
, pp.
1
7
.
16.
Kong
,
X.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
Zhang
,
Z.
,
2018
, “
Fault Diagnosis and Quantitative Analysis of Micro-Short Circuits for Lithium-Ion Batteries in Battery Packs
,”
J. Power Sources
,
395
, pp.
358
368
.
17.
Naha
,
A.
,
Khandelwal
,
A.
,
Hariharan
,
K. S.
,
Kaushik
,
A.
,
Yadu
,
A.
, and
Kolake
,
S. M.
,
2019
, “
On-Board Short-Circuit Detection of Li-Ion Batteries Undergoing Fixed Charging Profile as in Smartphone Applications
,”
IEEE Trans. Ind. Electron.
,
66
(
11
), pp.
8782
8791
.
18.
Chang
,
C.
,
Zhou
,
X.
,
Jiang
,
J.
,
Gao
,
Y.
,
Jiang
,
Y.
, and
Wu
,
T.
,
2022
, “
Micro-Fault Diagnosis of Electric Vehicle Batteries Based on the Evolution of Battery Consistency Relative Position
,”
J. Energy Storage
,
52
, p.
104746
.
19.
Gao
,
W.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Li
,
J.
,
Lai
,
X.
, and
Hu
,
X.
,
2019
, “
Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), pp.
2132
2142
.
20.
Zhang
,
Q.
,
Shang
,
Y.
,
Li
,
Y.
,
Cui
,
N.
,
Duan
,
B.
, and
Zhang
,
C.
,
2020
, “
A Novel Fractional Variable-Order Equivalent Circuit Model and Parameter Identification of Electric Vehicle Li-Ion Batteries
,”
ISA Trans.
,
97
, pp.
448
457
.
21.
Fotouhi
,
A.
,
Auger
,
D. J.
,
Propp
,
K.
,
Longo
,
S.
, and
Wild
,
M.
,
2016
, “
A Review on Electric Vehicle Battery Modelling: From Lithium-Ion Toward Lithium–Sulphur
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1008
1021
.
22.
Zhang
,
X.
,
Zhang
,
W.
, and
Lei
,
G.
,
2016
, “
A Review of Li-Ion Battery Equivalent Circuit Models
,”
Trans. Electr. Electron. Mater.
,
17
(
6
), pp.
311
316
.
23.
Hu
,
X.
,
Li
,
S.
, and
Peng
,
H.
,
2012
, “
A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries
,”
J. Power Sources
,
198
, pp.
359
367
.
24.
Dragomiretskiy
,
K.
, and
Zosso
,
D.
,
2014
, “
Variational Mode Decomposition
,”
IEEE Trans. Signal Process.
,
62
(
3
), pp.
531
544
.
25.
Li
,
J.
,
Arbizzani
,
C.
,
Kjelstrup
,
S.
,
Xiao
,
J.
,
Xia
,
Y.
,
Yu
,
Y.
,
Yang
,
Y.
, et al
,
2020
, “
Good Practice Guide for Papers on Batteries for the Journal of Power Sources
,”
J. Power Sources
,
452
, p.
227824
.
26.
Chang
,
C.
,
Wang
,
S.
,
Jiang
,
J.
,
Gao
,
Y.
,
Jiang
,
Y.
, and
Liao
,
L.
,
2022
, “
Lithium-Ion Battery State of Health Estimation Based on Electrochemical Impedance Spectroscopy and Cuckoo Search Algorithm Optimized Elman Neural Network
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
030912
.
27.
Han
,
W.
,
Hibino
,
M.
, and
Kudo
,
T.
,
2000
, “
Hysteresis on the Electrochemical Lithium Insertion and Extraction of Hexagonal Tungsten Trioxide: Influence of Residual Ammonium
,”
Solid State Ion.
,
128
(
1–4
), pp.
25
32
.
28.
Zheng
,
T.
, and
Dahn
,
J. R.
,
1997
, “
Hysteresis Observed in Quasi Open-Circuit Voltage Measurements of Lithium Insertion in Hydrogen-Containing Carbons
,”
J. Power Sources
,
68
(
2
), pp.
201
203
.
29.
Liu
,
L.
,
Feng
,
X.
,
Zhang
,
M.
,
Lu
,
L.
,
Han
,
X.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Comparative Study on Substitute Triggering Approaches for Internal Short Circuit in Lithium-Ion Batteries
,”
Appl. Energy
,
259
, p.
114143
.
You do not currently have access to this content.