Abstract

We developed a three-dimensional multiphysics numerical model of a proton exchange membrane fuel cell (PEMFC) with a cathode mesh structure to investigate how coolant flowrate and temperature impact its performance. After experimentally validating the model, we compared the performance of the cathode mesh structure PEMFC with that of the traditional straight-flow PEMFC. The results indicate that the cathode mesh structure PEMFC has a lower pressure drop and a more index of uniform distribution (IUD), leading to enhanced performance, better temperature distribution, and improved water management of the PEMFC. The investigation of the cooling system’s operating parameters revealed that the temperature of the cathode catalyst layer in the PEMFC is the highest, while the temperature of the bipolar plate is the lowest. Of the nine cases that we evaluated, Case 7, with a coolant inlet temperature and flowrate of 303.15 K and 0.07 m/s, respectively, yielded the highest power density and the lowest average temperature. The IUD of the proton exchange membrane (PEM) in Case 5 was 0.608, suggesting that the temperature distribution of the PEM is more uniform when the coolant inlet temperature and flowrate are 323.15 K and 0.05 m/s, respectively. We have demonstrated through calculations a strong correlation between temperature difference and IUDs. These findings have significant implications for the optimization and application of PEMFCs.

References

1.
Yin
,
C.
,
Song
,
Y.
,
Liu
,
M.
,
Gao
,
Y.
,
Li
,
K.
,
Qiao
,
Z.
, and
Tang
,
H.
,
2022
, “
Investigation of Proton Exchange Membrane Fuel Cell Stack With Inversely Phased Wavy Flow Field Design
,”
Appl. Energy
,
305
, p.
117893
.
2.
Zhu
,
W.
,
Han
,
J.
,
Ge
,
Y.
,
Yang
,
J.
, and
Liang
,
W.
,
2023
, “
Performance Analysis and Multi-Objective Optimization of a Poly-Generation System Based on PEMFC, DCMD and Heat Pump
,”
Desalination
,
555
, p.
116542
.
3.
Wei
,
S. P.
, and
Li
,
C.
,
2023
, “
Design and Optimization of Spiral Heated Tubular Dimethyl Ether (DME) Steam Reforming Reactor
,”
Int. J. Hydrogen Energy
,
48
(
6
), pp.
2231
2246
.
4.
Ding
,
F.
,
Zou
,
T.
,
Wei
,
T.
,
Chen
,
L.
,
Qin
,
X.
,
Shao
,
Z.
, and
Yang
,
J.
,
2023
, “
The Pinhole Effect on Proton Exchange Membrane Fuel Cell (PEMFC) Current Density Distribution and Temperature Distribution
,”
Appl. Energy
,
342
, p.
121136
.
5.
Chinannai
,
M. F.
,
Lee
,
J.
, and
Ju
,
H.
,
2021
, “
Study of the Characteristics of Temperature Rise and Coolant Flow Rate Control During Malfunction of PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
46
(
19
), pp.
11160
11175
.
6.
Zhu
,
X.
,
Su
,
L.
,
Wang
,
X.
,
Chen
,
R.
,
Ji
,
D.
,
Ma
,
Y.
,
Wu
,
L.
,
Zhang
,
J.
, and
Zhou
,
W.
,
2023
, “
Effects of Operating Conditions on the Performance Uniformity of the Proton-Exchange Membrane Fuel Cell Stack
,”
Energy Convers. Manage.
,
281
, p.
116856
.
7.
Ghasemi
,
M.
,
Ramiar
,
A.
,
Ranjbar
,
A. A.
, and
Rahgoshay
,
S. M.
,
2017
, “
A Numerical Study on Thermal Analysis and Cooling Flow Fields Effect on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24319
24337
.
8.
Afshari
,
E.
,
Ziaei-Rad
,
M.
, and
Dehkordi
,
M. M.
,
2017
, “
Numerical Investigation on a Novel Zigzag-Shaped Flow Channel Design for Cooling Plates of PEM Fuel Cells
,”
J. Energy Inst.
,
90
(
5
), pp.
752
763
.
9.
Baek
,
S. M.
,
Yu
,
S. H.
,
Nam
,
J. H.
, and
Kim
,
C.-J.
,
2011
, “
A Numerical Study on Uniform Cooling of Large-Scale PEMFCs With Different Coolant Flow Field Designs
,”
Appl. Therm. Eng.
,
31
(
8–9
), pp.
1427
1434
.
10.
Rahimi-Esbo
,
M.
,
Rahgoshay
,
S. M.
,
Hassani
,
M. M.
, and
Dadashi Firouzjaei
,
K.
,
2020
, “
Novel Design and Numerical Evaluating of a Cooling Flow Field in PEMFC With Metallic Bipolar Plates
,”
Int. J. Hydrogen Energy
.
11.
Wang
,
J.
,
Wang
,
S.
,
Zhu
,
Y.
, and
Wang
,
Y.
,
2023
, “
Effect of Cooling Surface Temperature Difference on the Performance of High-Temperature Pemfcs
,”
Int. J. Hydrogen Energy
,
48
(
44
), pp.
16813
16828
.
12.
Liu
,
X.
,
Bai
,
M.
,
Zhou
,
Z.
,
Poramapojana
,
P.
,
Li
,
Y.
,
Gao
,
L.
,
Li
,
Y.
, and
Song
,
Y.
,
2023
, “
Three-Dimensional Multi-Phase Numerical Study for the Effect of Coolant Flow Field Designs on Water and Thermal Management for the Large-Scale PEMFCs
,”
Int. J. Hydrogen Energy
,
48
(
61
), pp.
23681
23705
.
13.
Shen
,
H.
,
Huang
,
Y.
,
Kang
,
H.
,
Shen
,
J.
,
Yu
,
J.
,
Zhang
,
J.
, and
Li
,
Z.
,
2022
, “
Effect of the Cooling Water Flow Direction on the Performance of PEMFCs
,”
Int. J. Heat Mass Transfer
,
189
, p.
122303
.
14.
Zhang
,
G.
,
Xie
,
X.
,
Xuan
,
J.
,
Jiao
,
K.
, and
Wang
,
Y.
,
2019
, “Three-Dimensional Multi-Scale Simulation for Large-Scale Proton Exchange Membrane Fuel Cell,” SAE Technical Paper No. 2019-01-0381.
15.
Yong
,
Z.
,
Shirong
,
H.
,
Xiaohui
,
J.
,
Yuntao
,
Y.
,
Mu
,
X.
, and
Xi
,
Y.
,
2022
, “
Characteristics of Proton Exchange Membrane Fuel Cell Considering “Dot Matrix” Gas Distribution Zones and Waveform Staggered Flow Field With Cooling Channels
,”
Energy Convers. Manage.
,
267
, p.
115881
.
16.
Neofytidis
,
C.
,
Paloukis
,
F.
,
Athanasopoulos
,
N.
,
Neophytides
,
S. G.
, and
Daletou
,
M. K.
,
2023
, “
Efficient High Temperature PEMFC Metallic Stack With Innovative Two-Phase Liquid Cooling
,”
Energy Convers. Manage.
,
283
, p.
116944
.
17.
Choi
,
E. J.
,
Park
,
J. Y.
, and
Kim
,
M. S.
,
2018
, “
A Comparison of Temperature Distribution in PEMFC With Single-Phase Water Cooling and Two-Phase HFE-7100 Cooling Methods by Numerical Study
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13406
13419
.
18.
Li
,
Q.
,
Wang
,
C.
,
Wang
,
C.
,
Zhou
,
T.
,
Zhang
,
X.
,
Zhang
,
Y.
,
Zhuge
,
W.
, and
Sun
,
L.
,
2023
, “
Comparison of Organic Coolants for Boiling Cooling of Proton Exchange Membrane Fuel Cell
,”
Energy
,
266
, p.
126342
.
19.
Chen
,
F.
,
Pei
,
Y.
,
Jiao
,
J.
,
Chi
,
X.
, and
Hou
,
Z.
,
2023
, “
Energy Flow and Thermal Voltage Analysis of Water-Cooled PEMFC Stack Under Normal Operating Conditions
,”
Energy
,
275
, p.
127254
.
20.
Han
,
Y.
,
Zhuge
,
W.
,
Peng
,
J.
,
Qian
,
Y.
,
Ming
,
P.
, and
Zhang
,
Y.
,
2023
, “
A Novel Heat Pipe Bipolar Plate for Proton Exchange Membrane Fuel Cells
,”
Energy Convers. Manage.
,
284
, p.
116945
.
21.
Wang
,
L.
,
Quan
,
Z.
,
Zhao
,
Y.
,
Yang
,
M.
, and
Jing
,
H.
,
2023
, “
Heat Transfer Process Analysis and Performance Research of Micro Heat Pipe Array Applied for the Thermal Management of Proton Exchange Membrane Fuel Cells
,”
Appl. Therm. Eng.
,
219
, p.
119531
.
22.
Yoshida
,
T.
, and
Kojima
,
K.
,
2015
, “
Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society
,”
Interface Mag.
,
24
(
2
), pp.
45
49
.
23.
Kim
,
J.
,
Luo
,
G.
, and
Wang
,
C.-Y.
,
2017
, “
Modeling Two-Phase Flow in Three-Dimensional Complex Flow-Fields of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
365
, pp.
419
429
.
24.
Hwang
,
J.-J.
,
Dlamini
,
M. M.
,
Weng
,
F.-B.
,
Chang
,
T.
,
Lin
,
C.-H.
, and
Weng
,
S.-C.
,
2022
, “
Simulation of Fine Mesh Implementation on the Cathode for Proton Exchange Membrane Fuel Cell (PEMFC)
,”
Energy
,
244
, p.
122714
.
25.
Tong
,
G.
,
Xu
,
X.
,
Yuan
,
Q.
,
Yang
,
Y.
,
Tang
,
W.
, and
Sun
,
X.
,
2020
, “
Research on Influencing Factors of Heat Transfer Enhancement Fins in Fuel Cell Cooling Channel
,”
Ionics
,
27
(
2
), pp.
743
757
.
26.
Min
,
X.
,
Xia
,
J.
,
Zhang
,
X.
, and
Ding
,
K.
,
2022
, “
Study on the Output Performance of the Proton Exchange Membrane Fuel Cells Using Print Circuit Board
,”
Renew. Energy
,
197
, pp.
359
370
.
27.
Cai
,
Y.
,
Sun
,
J.
,
Wei
,
F.
, and
Chen
,
B.
,
2022
, “
Effect of Baffle Dimensionless Size Factor on the Performance of Proton Exchange Membrane Fuel Cell
,”
Energies
,
15
(
10
), p.
3812
.
28.
Li
,
D.
,
Ma
,
Z.
,
Shao
,
W.
,
Li
,
Y.
, and
Guo
,
X.
,
2022
, “
Finite Time Thermodynamic Modeling and Performance Analysis of High-Temperature Proton Exchange Membrane Fuel Cells
,”
Int. J. Mol. Sci.
,
23
(
16
), p.
9157
.
29.
Sim
,
J.
,
Kang
,
M.
,
Kim
,
J.
, and
Min
,
K.
,
2022
, “
Effects of Operating Conditions, Various Properties of the Gas Diffusion Layer, and Shape of Endplate on the Open-Cathode Proton Exchange Membrane Fuel Cell Performance
,”
Renew. Energy
,
196
, pp.
40
51
.
30.
Yu
,
S.
, and
Jung
,
D.
,
2008
, “
Thermal Management Strategy for a Proton Exchange Membrane Fuel Cell System With a Large Active Cell Area
,”
Renew. Energy
,
33
(
12
), pp.
2540
2548
.
31.
Wang
,
H.
,
Wang
,
R.
,
Sui
,
S.
,
Sun
,
T.
,
Yan
,
Y.
, and
Du
,
S.
,
2021
, “
Cathode Design for Proton Exchange Membrane Fuel Cells in Automotive Applications
,”
Autom. Innov.
,
4
(
2
), pp.
144
164
.
32.
Derendyaev
,
M. A.
,
Koryakin
,
D. V.
,
Filalova
,
E. M.
,
Yalmaev
,
A. B.
,
Galin
,
M. Z.
,
Gerasimova
,
E. V.
,
Antipov
,
A. E.
,
Levchenko
,
A. V.
, and
Dobrovolsky
,
Y. A.
,
2020
, “
Role of Platinum Loading on the Characteristics at the PEM Fuel Cell Cathode
,”
Nanotechnol. Russia
,
15
(
11–12
), pp.
797
806
.
33.
Meihui
,
T.
,
Huiyuan
,
L.
,
Huaneng
,
S.
, and
Weiqi
,
Z.
,
2023
, “
Optimization on Composition and Structure of Catalyst Layer for High-Temperature Polymer Electrolyte Membrane Fuel Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
20
(
4
), p.
040801
.
You do not currently have access to this content.