Abstract

Metal-metal (hydr)oxide interfaces can promote the CO2 selectivity of ethanol oxidation reaction (EOR) due to so-called metal–oxide interaction (MOI). Here, we first show that the mixture of Ir and PbO species at the nanoscale can also form “bifunctional effect” sites, where the C–C bond of ethanol can be effectively cut at Ir sites to generate C1 intermediates, and nearby PbO species could provide oxygenated species. The as-prepared Ir-PbO/C catalysts with a mean metallic nanoparticle size of 2.6 ± 0.5 nm can greatly improve the activity, stability, and C1 pathway selectivity of EOR. Specifically, it exhibits superior mass activity of 1150 mA/mgIr in 1 M NaOH solution containing 1 M C2H5OH. Chronoamperometry tests show that the stability of Ir-PbO/C is also significantly improved compared with Ir/C. In situ electrochemical infrared absorption spectral results confirm that the addition of oxophilic PbO species could accelerate the oxidative removal of COad intermediates, thereby greatly improving catalytic performance. This study may give new insights into designing efficient anode catalysts for the direct ethanol fuel cells (DEFCs).

References

1.
Antolini
,
E.
, and
Gonzalez
,
E. R.
,
2010
, “
Alkaline Direct Alcohol Fuel Cells
,”
J. Power Sources
,
195
(
11
), pp.
3431
3450
.
2.
Bianchini
,
C.
, and
Shen
,
P. K.
,
2009
, “
Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells
,”
Chem. Rev.
,
109
(
9
), pp.
4183
4206
.
3.
Kim
,
I.
,
Han
,
O. H.
,
Chae
,
S. A.
,
Paik
,
Y.
,
Kwon
,
S.-H.
,
Lee
,
K.-S.
,
Sung
,
Y.-E.
, and
Kim
,
H.
,
2011
, “
Catalytic Reactions in Direct Ethanol Fuel Cells
,”
Angew. Chem. Int. Ed.
,
50
(
10
), pp.
2270
2274
.
4.
Rabis
,
A.
,
Rodriguez
,
P.
, and
Schmidt
,
T. J.
,
2012
, “
Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges
,”
ACS Catal.
,
2
(
5
), pp.
864
890
.
5.
Rao
,
L.
,
Jiang
,
Y. X.
,
Zhang
,
B. W.
,
You
,
L. X.
,
Li
,
Z. H.
, and
Sun
,
S. G.
,
2014
, “
Electrocatalytic Oxidation of Ethanol
,”
Prog. Chem.
,
26
(
5
), pp.
727
736
.
6.
Colmati
,
F.
,
Tremiliosi-Filho
,
G.
,
Gonzalez
,
E. R.
,
Berná
,
A.
,
Herrero
,
E.
, and
Feliu
,
J. M.
,
2009
, “
The Role of the Steps in the Cleavage of the C-C Bond During Ethanol Oxidation on Platinum Electrodes
,”
Phys. Chem. Chem. Phys.
,
11
(
10
), pp.
9114
9123
.
7.
Kavanagh
,
R.
,
Cao
,
X.-M.
,
Lin
,
W.-F.
,
Hardacre
,
C.
, and
Hu
,
P.
,
2012
, “
Origin of Low CO2 Selectivity on Platinum in the Direct Ethanol Fuel Cell
,”
Angew. Chem. Int. Ed.
,
51
(
7
), pp.
1572
1575
.
8.
Lyu
,
F.
,
Cao
,
M.
,
Mahsud
,
A.
, and
Zhang
,
Q.
,
2020
, “
Interfacial Engineering of Noble Metals for Electrocatalytic Methanol and Ethanol Oxidation
,”
J. Mater. Chem. A.
,
8
(
31
), pp.
15445
15457
.
9.
Wang
,
Y.
,
Zou
,
S.
, and
Cai
,
W.-B.
,
2015
, “
Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials
,”
Catalysts
,
5
(
3
), pp.
1507
1534
.
10.
Yang
,
Y.-Y.
,
Ren
,
J.
,
Li
,
Q.-X.
,
Zhou
,
Z.-Y.
,
Sun
,
S.-G.
, and
Cai
,
W.-B.
,
2014
, “
Electrocatalysis of Ethanol on a Pd Electrode in Alkaline Media: An In Situ Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy Study
,”
ACS Catal.
,
4
(
3
), pp.
798
803
.
11.
Bayer
,
D.
,
Berenger
,
S.
,
Joos
,
M.
,
Cremers
,
C.
, and
Tübke
,
J.
,
2010
, “
Electrochemical Oxidation of C2 Alcohols at Platinum Electrodes in Acidic and Alkaline Environment
,”
Int. J. Hydrogen Energy
,
35
(
22
), pp.
12660
12667
.
12.
Li
,
Y.
,
Wang
,
Y.
,
Mao
,
H.
, and
Li
,
Q.
,
2016
, “
Synthesis of Carbon Supported Pd-Sn Catalysts by Ethylene Glycol Method for Ethanol Electrooxidation
,”
Int. J. Electrochem. Sci.
,
11
(
8
), pp.
7011
7019
.
13.
Zhu
,
C.
,
Hai
,
Y.
,
Zhao
,
Z.
, and
Yang
,
Y.
,
2018
, “
Preliminary Study of Ni and P Low-Doped Pd-Based Electrocatalysts Toward Ethanol Oxidation Reaction in Alkaline Media
,”
Acta Chim. Sin.
,
76
(
1
), pp.
30
34
.
14.
Huang
,
W.
,
Ma
,
X. Y.
,
Wang
,
H.
,
Feng
,
R.
,
Zhou
,
J.
,
Duchesne
,
P. N.
,
Zhang
,
P.
, et al
,
2017
, “
Promoting Effect of Ni(OH)2 on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution
,”
Adv. Mater.
,
29
(
37
), p.
1703057
.
15.
Chang
,
J.
,
Wang
,
G.
,
Wang
,
M.
,
Wang
,
Q.
,
Li
,
B.
,
Zhou
,
H.
,
Zhu
,
Y.
, et al
,
2021
, “
Improving Pd-N-C Fuel Cell Electrocatalysts Through Fluorination-Driven Rearrangements of Local Coordination Environment
,”
Nat. Energy
,
6
(
12
), pp.
1144
1153
.
16.
Peng
,
H.
,
Ren
,
J.
,
Wang
,
Y.
,
Xiong
,
Y.
,
Wang
,
Q.
,
Li
,
Q.
,
Zhao
,
X.
, et al
,
2021
, “
One-Stone, Two Birds: Alloying Effect and Surface Defects Induced by Pt on Cu2−xSe Nanowires to Boost C-C Bond Cleavage for Electrocatalytic Ethanol Oxidation
,”
Nano Energy
,
88
(
1
), p.
106307
.
17.
Lv
,
H.
,
Sun
,
L.
,
Wang
,
Y.
,
Liu
,
S.
, and
Liu
,
B.
,
2022
, “
Highly Curved, Quasi-Single-Crystalline Mesoporous Metal Nanoplates Promote C-C Bond Cleavage in Ethanol Oxidation Electrocatalysis
,”
Adv. Mater.
,
34
(
30
), Article No. e2203612.
18.
Li
,
M.
,
Cullen
,
D. A.
,
Sasaki
,
K.
,
Marinkovic
,
N. S.
,
More
,
K.
, and
Adzic
,
R. R.
,
2013
, “
Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C Bond
,”
J. Am. Chem. Soc.
,
135
(
1
), pp.
132
141
.
19.
Miao
,
B.
,
Wu
,
Z.
,
Xu
,
H.
,
Zhang
,
M.
,
Chen
,
Y.
, and
Wang
,
L.
,
2017
, “
Ir Catalysts: Preventing CH3COOH Formation in Ethanol Oxidation
,”
Chem. Phys. Lett.
,
688
(
1
), pp.
92
97
.
20.
Wei
,
R.-L.
,
Miao
,
M.-Y.
,
Liu
,
Y.
,
Jiang
,
X.-L.
, and
Yang
,
Y.-Y.
,
2021
, “
Electrochemical Attenuated Total Reflection Surface-Enhanced Infrared Absorption Spectroscopy Insights Into CO Adsorption and Oxidation on Iridium Surface
,”
J. Phys. Chem. C
,
125
(
22
), pp.
12086
12093
.
21.
Zhao
,
L.
,
Mitsushima
,
S.
,
Ishihara
,
A.
,
Matsuzawa
,
K.
, and
Ota
,
K.
,
2011
, “
Pt-Ir-SnO2/C Electrocatalysts for Ethanol Oxidation in Acidic Media
,”
Chin. J. Catal.
,
32
(
11–12
), pp.
1856
1863
.
22.
Du
,
W.
,
Deskins
,
N. A.
,
Su
,
D.
, and
Teng
,
X.
,
2012
, “
Iridium-Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions
,”
ACS Catal.
,
2
(
6
), pp.
1226
1231
.
23.
Du
,
W.
,
Wang
,
Q.
,
Saxner
,
D.
,
Deskins
,
N. A.
,
Su
,
D.
,
Krzanowski
,
J. E.
,
Frenkel
,
A. I.
, and
Teng
,
X.
,
2011
, “
Highly Active Iridium/Iridium-Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction
,”
J. Am. Chem. Soc.
,
133
(
38
), pp.
15172
15183
.
24.
Chang
,
Q.
,
Kattel
,
S.
,
Li
,
X.
,
Liang
,
Z.
,
Tackett
,
B. M.
,
Denny
,
S. R.
,
Zhang
,
P.
,
Su
,
D.
,
Chen
,
J. G.
, and
Chen
,
Z.
,
2019
, “
Enhancing C-C Bond Scission for Efficient Ethanol Oxidation Using PtIr Nanocube Electrocatalysts
,”
ACS Catal.
,
9
(
9
), pp.
7618
7625
.
25.
Wandelt
,
K.
,
2018
,
Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry
,
Elsevier
,
New York
, pp.
881
897
.
26.
Tian
,
H.
,
Zhu
,
R.
,
Deng
,
P.
,
Li
,
J.
,
Huang
,
W.
,
Chen
,
Q.
,
Su
,
Y. Q.
, et al
,
2022
, “
Ultrathin Pd3Pt1Rh0.1 Nanorings With Strong C-C Bond Breaking Ability for the Ethanol Oxidation Reaction
,”
Small
,
18
(
40
), p.
2203506
.
27.
Yuan
,
X.
,
Zhang
,
Y.
,
Cao
,
M.
,
Zhou
,
T.
,
Jiang
,
X.
,
Chen
,
J.
,
Lyu
,
F.
, et al
,
2019
, “
Bi(OH)3/PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation
,”
Nano Lett.
,
19
(
7
), pp.
4752
4759
.
28.
Lan
,
B.
,
Huang
,
M.
,
Wei
,
R.-L.
,
Wang
,
C.-N.
,
Wang
,
Q.-L.
, and
Yang
,
Y.-Y.
,
2020
, “
Ethanol Electrooxidation on Rhodium-Lead Catalysts in Alkaline Media: High Mass Activity, Long-Term Durability, and Considerable CO2 Selectivity
,”
Small
,
16
(
40
), Article No. 2004380.
29.
Huang
,
M.
,
Lan
,
B.
,
Jiang
,
X. L.
,
Yang
,
Y. Y.
, and
Jia
,
W. S.
,
2022
, “
Interfacial Engineering Pb Skin-Layer at Rh Surface to Promote Ethanol Electrooxidation Into CO2 in Alkaline Media
,”
Int. J. Hydrogen Energy
,
47
(
82
), pp.
34932
34942
.
30.
Lan
,
B.
,
Wang
,
Q. L.
,
Ma
,
Z. X.
,
Wu
,
Y. J.
,
Jiang
,
X. L.
,
Jia
,
W. S.
,
Zhou
,
C. X.
, and
Yang
,
Y. Y.
,
2022
, “
Efficient Electrochemical Ethanol-to-CO2 Conversion at Rhodium and Bismuth Hydroxide Interfaces
,”
Appl. Catal. B
,
300
(
1
).
31.
He
,
Q.
,
Shyam
,
B.
,
Macounová
,
K.
,
Krtil
,
P.
,
Ramaker
,
D.
, and
Mukerjee
,
S.
,
2012
, “
Dramatically Enhanced Cleavage of the C-C Bond Using an Electrocatalytically Coupled Reaction
,”
J. Am. Chem. Soc.
,
134
(
20
), pp.
8655
8661
.
32.
Yang
,
Y. Y.
,
Zhang
,
H.
, and
Cai
,
W. B.
,
2013
, “
Recent Experimental Progresses on Electrochemical ATR-SEIRAS
,”
J. Electrochem.
,
19
(
1
), pp.
6
16
.
33.
Zhang
,
H.-X.
,
Wang
,
S.-H.
,
Jiang
,
K.
,
André
,
T.
, and
Cai
,
W.-B.
,
2012
, “
In Situ Spectroscopic Investigation of CO Accumulation and Poisoning on Pd Black Surfaces in Concentrated HCOOH
,”
J. Power Sources
,
199
(
1
), pp.
165
169
.
34.
Zhu
,
S.
,
Jiang
,
B.
,
Cai
,
W.-B.
, and
Shao
,
M.
,
2017
, “
Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces
,”
J. Am. Chem. Soc.
,
139
(
44
), pp.
15664
15667
.
35.
Zhang
,
G.
, and
Zhang
,
Z.
,
2020
, “
Ir3Pb Alloy Nanodendrites With High Performance for Ethanol Electrooxidation and Their Enhanced Durability by Alloying Trace Au
,”
Inorg. Chem. Front.
,
7
(
11
), pp.
2231
2240
.
36.
Zhu
,
M.
,
Shao
,
Q.
,
Pi
,
Y.
,
Guo
,
J.
,
Huang
,
B.
,
Qian
,
Y.
, and
Huang
,
X.
,
2017
, “
Ultrathin Vein-Like Iridium-Tin Nanowires With Abundant Oxidized Tin as High-Performance Ethanol Oxidation Electrocatalysts
,”
Small
,
13
(
36
), Article 1701295.
37.
Poerwoprajitno
,
A. R.
,
Gloag
,
L.
,
Cheong
,
S.
,
Gooding
,
J. J.
, and
Tilley
,
R. D.
,
2019
, “
Synthesis of Low- and High-Index Faceted Metal (Pt, Pd, Ru, Ir, Rh) Nanoparticles for Improved Activity and Stability in Electrocatalysis
,”
Nanoscale
,
11
(
41
), pp.
18995
19011
.
38.
Xiao
,
T.
,
Tian
,
N.
,
Zhou
,
Z. Y.
, and
Sun
,
S. G.
,
2020
, “
Electrochemical Preparations and Applications of Nano-Catalysts With High-Index Facets
,”
J. Electrochem.
,
26
(
1
), pp.
61
72
.
39.
Chen
,
M.
,
Wu
,
B.
,
Yang
,
J.
, and
Zheng
,
N.
,
2012
, “
Small Adsorbate-Assisted Shape Control of Pd and Pt Nanocrystals
,”
Adv. Mater.
,
24
(
7
), pp.
862
879
.
40.
Chen
,
Q.
,
Jia
,
Y.
,
Xie
,
S.
, and
Xie
,
Z.
,
2016
, “
Well-Faceted Noble-Metal Nanocrystals With Nonconvex Polyhedral Shapes
,”
Chem. Soc. Rev.
,
45
(
11
), pp.
3207
3220
.
41.
Deng
,
D.
,
Novoselov
,
K. S.
,
Fu
,
Q.
,
Zheng
,
N.
,
Tian
,
Z.
, and
Bao
,
X.
,
2016
, “
Catalysis With Two-Dimensional Materials and Their Heterostructures
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
218
230
.
42.
Cao
,
L.
,
Sun
,
G.
,
Li
,
H.
, and
Xin
,
Q.
,
2007
, “
Carbon-Supported IrSn Catalysts for Direct Ethanol Fuel Cell
,”
Fuel Cells Bulletin
,
2007
(
11
), pp.
12
16
.
43.
Chen
,
M.-X.
,
Liu
,
Y.
,
Song
,
T.-W.
,
Wei
,
R.-L.
,
Zhuang
,
X.-D.
,
Yang
,
Y.-Y.
, and
Liang
,
H.-W.
,
2022
, “
Intermetallic PdCd Core Promoting CO Tolerance of Pd Shell for Electrocatalytic Formic Acid Oxidation
,”
Chinese J. Chem.
,
40
(
18
), pp.
2161
2168
.
44.
Wang
,
P. W.
, and
Zhang
,
L.
,
1996
, “
Structural Role of Lead in Lead Silicate Glasses Derived From XPS Spectra
,”
J. Non-Cryst. Solids
,
194
(
1–2
), pp.
129
134
.
45.
Kunimatsu
,
K.
,
Senzaki
,
T.
,
Tsushima
,
M.
, and
Osawa
,
M.
,
2005
, “
A Combined Surface-Enhanced Infrared and Electrochemical Kinetics Study of Hydrogen Adsorption and Evolution on a Pt Electrode
,”
Chem. Phys. Lett.
,
401
(
4–6
), pp.
451
454
.
46.
Marković
,
N. M.
,
Schmidt
,
T. J.
,
Grgur
,
B. N.
,
Gasteiger
,
H. A.
,
Behm
,
R. J.
, and
Ross
,
P. N.
,
1999
, “
Effect of Temperature on Surface Processes at the Pt(111)-Liquid Interface: Hydrogen Adsorption, Oxide Formation, and CO Oxidation
,”
J. Phy. Chem. B
,
103
(
40
), pp.
8568
8577
.
47.
Solla-Gullón
,
J.
,
Rodríguez
,
P.
,
Herrero
,
E.
,
Aldaz
,
A.
, and
Feliu
,
J. M.
,
2008
, “
Surface Characterization of Platinum Electrodes
,”
Phys. Chem. Chem. Phys.
,
10
(
10
), pp.
1359
1373
.
48.
Zhu
,
C.
,
Lan
,
B.
,
Wei
,
R. L.
,
Wang
,
C. N.
, and
Yang
,
Y. Y.
,
2019
, “
Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS
,”
ACS Catal.
,
9
(
5
), pp.
4046
4053
.
49.
Christensen
,
P.
,
Jones
,
S. W. M.
, and
Hamnett
,
A.
,
2013
, “
An In Situ FTIR Spectroscopic Study of the Electrochemical Oxidation of Ethanol at a Pb-Modified Polycrystalline Pt Electrode Immersed in Aqueous KOH
,”
Phys. Chem. Chem. Phys.
,
15
(
40
), pp.
17268
17276
.
50.
Suffredini
,
H. B.
,
Salazar-Banda
,
G. R.
, and
Avaca
,
L. A.
,
2007
, “
Enhanced Ethanol Oxidation on PbOx-Containing Electrode Materials for Fuel Cell Applications
,”
J. Power Sources
,
171
(
2
), pp.
355
362
.
51.
Fang
,
Y.
,
Cao
,
D.
,
Shi
,
Y.
,
Guo
,
S.
,
Wang
,
Q.
,
Zhang
,
G.
,
Cui
,
P.
, and
Cheng
,
S.
,
2021
, “
Highly Porous Pt2Ir Alloy Nanocrystals as a Superior Catalyst With High-Efficiency C-C Bond Cleavage for Ethanol Electrooxidation
,”
J. Phys. Chem. Lett.
,
12
(
29
), pp.
6773
6780
.
52.
Zhou
,
Z.-Y.
,
Wang
,
Q.
,
Lin
,
J.-L.
,
Tian
,
N.
, and
Sun
,
S.-G.
,
2010
, “
In Situ FTIR Spectroscopic Studies of Electrooxidation of Ethanol on Pd Electrode in Alkaline Media
,”
Electrochim. Acta
,
55
(
27
), pp.
7995
7999
.
53.
He
,
S.
,
Liu
,
Y.
,
Li
,
H.
,
Wu
,
Q.
,
Ma
,
D.
,
Gao
,
D.
,
Bi
,
J.
,
Yang
,
Y.
, and
Cui
,
C.
,
2021
, “
Highly Dispersed Mo Sites on Pd Nanosheets Enable Selective Ethanol-to-Acetate Conversion
,”
ACS Appl. Mater. Interfaces
,
13
(
11
), pp.
13311
13318
.
You do not currently have access to this content.