Abstract

Electrochemical actuators can convert electrical energy into mechanical energy directly and have been applied widely. With a large volume expansion in the electrochemical reaction, silicon material demonstrates enormous potential in the manufacture of electrochemical actuators. Here, we propose a new electrochemical actuator based on Si/CNTs composite electrode. A mathematical model is developed to analyze the relationship among material parameters, structural changes, and bending deformation. The curvature changes of the cantilever beam are captured by a charge-coupled device (CCD) camera during electrochemical cycling. Combining the model and bending curvatures, the modulus and swell strain are extracted and analyzed in detail. Here, the elastic modulus of the composite electrode softens and decreases from 9.59 GPa to 4.78 GPa, while the swell strain increases from 0.12% to 2.97% when arriving 6% normalized concentration of lithium. These results show that the composite material possesses excellent bending resistance and deformation ability. Also, the curvature changes under different thickness ratios are predicted successfully, the evolution of stress in the working electrode is simulated, and the loading experiment of the actuator is carried out. This work provides a new way to realize the controllability of the electrochemical actuators.

References

1.
Gupta
,
A.
, and
Mukherjee
,
S.
,
2022
, “
Actuation Characteristics and Experimental Identification of IPMC Actuator for Underwater Biomimetic Robotic Application
,”
Mater. Today: Proc.
,
62
(
14
), pp.
7461
7466
.
2.
Ismail
,
Y. A.
,
Shin
,
S. R.
,
Shin
,
K. M.
,
Yoon
,
S. G.
,
Shon
,
K.
,
Kim
,
S. I.
, and
Kim
,
S. J.
,
2008
, “
Electrochemical Actuation in Chitosan/Polyaniline Microfibers for Artificial Muscles Fabricated Using an In Situ Polymerization
,”
Sens. Actuators, B
,
129
(
2
), pp.
834
840
.
3.
Mostafa
,
M. H.
,
Ali
,
E. S.
, and
Darwish
,
M. S. A.
,
2022
, “
Polyaniline/Carbon Nanotube Composites in Sensor Applications
,”
Mater. Chem. Phys.
,
291
, p.
126699
.
4.
Li
,
N.
,
Wang
,
P.
,
Shi
,
H.
,
Chen
,
Y.
,
Yang
,
L.
,
Zhang
,
Y.
,
Song
,
W.-L.
,
Chen
,
H.-S.
, and
Fang
,
D.
,
2022
, “
An Ultrahigh Efficiency Electrochemical Actuator
,”
Extreme Mech. Lett.
,
53
, p.
101691
.
5.
Xu
,
Y.
,
Wang
,
T.
, and
Wang
,
Z.
,
2022
, “
Electrically Actuated Soft Actuator Integrated With an Electrochemical Reactor
,”
Extreme Mech. Lett.
,
56
, p.
101891
.
6.
Li
,
J.
,
Markmann
,
J.
,
Weissmüller
,
J.
, and
Mameka
,
N.
,
2021
, “
Nanoporous Gold-Polypyrrole Hybrid Electrochemical Actuators With Tunable Elasticity
,”
Acta Mater
,
212
, p.
116852
.
7.
Xue
,
F.
,
Peng
,
Q.
,
Liu
,
Z.
,
Li
,
P.
,
Zhao
,
X.
,
Zheng
,
H.
,
Chen
,
Z.
,
Xu
,
L.
,
Xiong
,
J.
, and
He
,
X.
,
2022
, “
3D Solvent-Responsive Actuator Capable of Directionally Outputting Thrust
,”
Cell Rep. Phys. Sci.
,
3
(
12
), p.
101183
.
8.
Wang
,
F.
,
Huang
,
D.
,
Li
,
Q.
,
Wu
,
Y.
,
Yan
,
B.
,
Wu
,
Z.
, and
Park
,
S.
,
2023
, “
Highly Electro-Responsive Ionic Soft Actuator Based on Graphene Nanoplatelets-Mediated Functional Carboxylated Cellulose Nanofibers
,”
Compos. Sci. Technol.
,
231
, p.
109845
.
9.
Zhang
,
Y.
, and
Ngan
,
A. H. W.
,
2017
, “
Multi-Scale, Multi-Physics Modeling of Electrochemical Actuation of Ni Nanohoneycomb in Water
,”
Comput. Mater. Sci.
,
128
, pp.
109
120
.
10.
Zhang
,
J.
,
Lv
,
L.
,
Gao
,
H.
,
Bai
,
Q.
,
Zhang
,
C.
, and
Zhang
,
Z.
,
2017
, “
Electrochemical Actuation Behaviors and Mechanisms of Bulk Nanoporous Ni-Pd Alloy
,”
Scr. Mater.
,
137
, pp.
73
77
.
11.
Li
,
Y.-Z.
,
Wang
,
S.-Q.
,
Ren
,
G.-H.
, and
Zhang
,
B.
,
2022
, “
Abnormal Actuating Performance of MXene/Polyimide Electrochemical Actuator in Neutral Aqueous Electrolytes
,”
J. Mater. Res.
,
37
(
22
), pp.
3998
4005
.
12.
Tan
,
F.
,
Yu
,
B.
,
Yan
,
X.
,
Zhang
,
Y.
,
Bai
,
Q.
,
Zhang
,
J.
, and
Zhang
,
Z.
,
2022
, “
Electrochemical Actuation Behaviors of Bulk Nanoporous Copper With a Hierarchical Structure
,”
J. Alloys Compd.
,
923
, p.
166469
.
13.
Lu
,
C.
,
Yang
,
Y.
,
Wang
,
J.
,
Fu
,
R.
,
Zhao
,
X.
,
Zhao
,
L.
,
Ming
,
Y.
, et al
,
2018
, “
High-Performance Graphdiyne-Based Electrochemical Actuators
,”
Nat. Commun.
,
9
(
1
), p.
752
.
14.
Zuzanna
,
Z.
,
Le
,
Q. B.
, and
Kiefer
,
R.
,
2022
, “
Polypyrrole With Embedded Carbide-Derived Carbon With and Without Phosphor Tungsten Acid: Linear Actuation and Energy Storage
,”
Polymers
,
4757
, pp.
1
16
.
15.
Gupta
,
B.
,
Goudeau
,
B.
, and
Kuhn
,
A.
,
2017
, “
Wireless Electrochemical Actuation of Conducting Polymers
,”
Angew. Chem. Int. Ed.
,
56
(
45
), pp.
14183
14186
.
16.
Rani
,
D.
,
Vijaya Kumara
,
A.
, and
Srinivasan
,
S.
,
2022
, “
Electrochemical Soft Actuator: Deciphering the Difference in the Characteristics of Polaronic and Bipolaronic Forms of Polyaniline
,”
Langmuir
,
38
(
31
), pp.
9575
9586
.
17.
Uvarov
,
I. V.
,
Melenev
,
A. E.
,
Selyukov
,
R. V.
, and
Svetovoy
,
V. B.
,
2020
, “
Improving the Performance of the Fast Electrochemical Actuator
,”
Sens. Actuators, A
,
315
, p.
112346
.
18.
Bai
,
Q.
,
Zhang
,
C.
,
Tan
,
F.
,
Wu
,
F.
, and
Zhang
,
Z.
,
2021
, “
Nanoporous Copper as an Inexpensive Electrochemical Actuator Responsive to Sub-Volt Voltages
,”
Electrochem. Commun
,
124
, p.
106940
.
19.
Wang
,
D.
,
Lu
,
C.
,
Zhao
,
J.
,
Han
,
S.
,
Wu
,
M.
, and
Chen
,
W.
,
2017
, “
High Energy Conversion Efficiency Conducting Polymer Actuators Based on PEDOT:PSS/MWCNTs Composite Electrode
,”
RSC Adv.
,
7
(
50
), pp.
31264
31271
.
20.
Xie
,
X.
,
Qu
,
L.
,
Zhou
,
C.
,
Li
,
Y.
,
Zhu
,
J.
,
Bai
,
H.
,
Shi
,
G.
, and
Dai
,
L.
,
2010
, “
An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator
,”
ACS Nano.
,
4
(
10
), pp.
6050
6054
.
21.
Pang
,
D.
,
Wang
,
X.
,
Liu
,
C.
,
Xu
,
H.
,
Chen
,
G.
,
Du
,
F.
,
Dall’Agnese
,
Y.
, and
Gao
,
Y.
,
2022
, “
A Synergistic Ti3C2T /PPy Bilayer Electrochemical Actuator
,”
Appl. Surf. Sci.
,
583
(
1
), p.
152403
.
22.
Liu
,
A.
,
Yuan
,
W.
, and
Shi
,
G.
,
2012
, “
Electrochemical Actuator Based on Polypyrrole/Sulfonated Graphene/Graphene Tri-Layer Film
,”
Thin Solid Films
,
520
(
19
), pp.
6307
6312
.
23.
Wu
,
G.
,
Wu
,
X.
,
Xu
,
Y.
,
Cheng
,
H.
,
Meng
,
J.
,
Yu
,
Q.
,
Shi
,
X.
,
Zhang
,
K.
,
Chen
,
W.
, and
Chen
,
S.
,
2019
, “
High-Performance Hierarchical Black-Phosphorous-Based Soft Electrochemical Actuators in Bioinspired Applications
,”
Adv. Mater.
,
31
(
25
), p.
e1806492
.
24.
Han
,
G.
, and
Shi
,
G.
,
2004
, “
Conducting Polymer Electrochemical Actuator Made of High-Strength Three-Layered Composite Films of Polythiophene and Polypyrrole
,”
Sens. Actuat., B
,
99
(
2
), pp.
525
531
.
25.
Han
,
G.
, and
Shi
,
G.
,
2004
, “
High-Response Tri-Layer Electrochemical Actuators Based on Conducting Polymer Films
,”
J. Electroanal. Chem.
,
569
(
2
), pp.
169
174
.
26.
Wang
,
T.
,
Wang
,
T.
,
Weng
,
C.
,
Liu
,
L.
,
Zhao
,
J.
, and
Zhang
,
Z.
,
2021
, “
Engineering Electrochemical Actuators With Large Bending Strain Based on 3D-Structure Titanium Carbide MXene Composites
,”
Nano Res.
,
14
(
7
), pp.
2277
2284
.
27.
Pei
,
Y.
,
Wang
,
Y.
,
Chang
,
A.-Y.
,
Liao
,
Y.
,
Zhang
,
S.
,
Wen
,
X.
, and
Wang
,
S.
, “
Nanofiber-In-Microfiber Carbon/Silicon Composite Anode With High Silicon Content for Lithium-Ion Batteries
,”
Carbon
,
203
, pp.
436
444
.
28.
Ou
,
J.
,
Li
,
B.
,
Deng
,
H.
,
Li
,
K.
, and
Wang
,
H.
,
2023
, “
A Carbon-Covered Silicon Material Modified by Phytic Acid With 3D Conductive Network as Anode for Lithium-Ion Batteries
,”
Adv. Powder Technol.
,
34
(
1
), p.
103891
.
29.
Lang
,
J.
,
Ding
,
B.
,
Zhu
,
T.
,
Su
,
H.
,
Luo
,
H.
,
Qi
,
L.
,
Liu
,
K.
, et al
,
2016
, “
Cycling of a Lithium-Ion Battery With a Silicon Anode Drives Large Mechanical Actuation
,”
Adv. Mater.
,
28
(
46
), pp.
10236
10243
.
30.
Horiuchi
,
T.
,
Kato
,
Y.
, and
Sugino
,
T.
,
2023
, “
Three-Layer Ionic Polymer–Metal Composite Actuator With Functionalized Carbon Nanotubes Incorporated Into Nafion
,”
Sens. Actuat., A
,
352
, p.
114178
.
31.
Svetovoy
,
V. B.
,
Uvarov
,
I. V.
,
Postnikov
,
A. V.
,
Sanders
,
R. G. P.
, and
Krijnen
,
G.
,
2016
, “
Electrochemical Actuator With a Short Response Time: A New Actuation Regime
,”
Sens. Actuat., A
,
243
, pp.
1
6
.
32.
Li
,
D.
,
Li
,
Z.
,
Song
,
Y.
, and
Zhang
,
J.
,
2016
, “
Analysis of Diffusion Induced Elastoplastic Bending of Bilayer Lithium-Ion Battery Electrodes
,”
Appl. Math. Mech.
,
37
(
5
), pp.
659
670
.
33.
Harnden
,
R.
,
Peuvot
,
K.
,
Zenkert
,
D.
, and
Lindbergh
,
G.
,
2018
, “
Multifunctional Performance of Sodiated Carbon Fibers
,”
J. Electrochem. Soc.
,
165
(
13
), pp.
616
622
.
34.
Cai
,
G.
,
He
,
L.
, and
Huang
,
Y.
,
2022
, “
Influence of La Addition on Order–Disorder Transformation and Deformation Softening Behavior of Fe–6.5 wt % Si Alloy
,”
Phys. Met. Metall.
,
123
(
13
), pp.
1343
1347
.
35.
Li
,
D.
,
Wang
,
Y.
,
Hu
,
J.
,
Lu
,
B.
,
Cheng
,
Y.-T.
, and
Zhang
,
J.
,
2017
, “
In Situ Measurement of Mechanical Property and Stress Evolution in a Composite Silicon Electrode
,”
J. Power Sources.
,
366
, pp.
80
85
.
36.
Xia
,
F.
,
Peng
,
H.
,
Liang
,
Q.
,
Peng
,
X.
,
Sun
,
C.
, and
Wu
,
J.
,
2021
, “
Serial Cracking in Van der Waals Layered Electrodes Mediated by Electrochemical Reaction and Mechanical Deformation
,”
Cell Rep. Phys. Sci.
,
2
(
11
), p.
100642
.
You do not currently have access to this content.