Abstract

A separator plays a crucial role in a Li-ion battery to carry liquid electrolytes while preventing short-circuiting between electrodes. Nevertheless, conventional commercial separators often exhibit poor wettability and are prone to shrink at elevated temperatures due to their limited thermal stability. Herein, we report a heat-resistant LATP–PVDF–Al2O3 composite film with outstanding wetting performance. The thin film was prepared using ball mill mixing and tape-casting processes. Two solvents, NMP and glycerol, were applied to prepare the slurry, and a favorable microstructure in the film was created after drying. The ionic conductivity of the film was tested at 1.39 mS cm−1 when paired with liquid electrolyte, almost double that of the commercial counterpart. The high ceramic loading of 70% improved both the thermal shrinkage resistance and dendrite inhibition of the membrane. When assembled in an NMC half-cell, the cycling capacity retentions of 92.8% and 92.1% are achieved after 50 cycles at 0.5 C and 1 C, demonstrating its capability to be used in Li-ion batteries.

References

1.
Shi
,
D.
,
Xiao
,
X.
,
Huang
,
X.
, and
Kia
,
H.
,
2011
, “
Modeling Stresses in the Separator of a Pouch Lithium-Ion Cell
,”
J. Power Sources
,
196
(
19
), pp.
8129
8139
.
2.
Zhang
,
S. S.
,
2007
, “
A Review on the Separators of Liquid Electrolyte Li-Ion Batteries
,”
J. Power Sources
,
164
(
1
), pp.
351
364
.
3.
Zhu
,
M.
,
Wang
,
Q.
,
Zhou
,
H.
, and
Qi
,
L.
,
2020
, “
Binder-Free TiO2-Coated Polypropylene Separators for Advanced Lithium-Ion Batteries
,”
Energy Technol.
,
8
(
7
), p.
2000228
.
4.
Blake
,
A. J.
,
Kohlmeyer
,
R. R.
,
Hardin
,
J. O.
,
Carmona
,
E. A.
,
Maruyama
,
B.
,
Berrigan
,
J. D.
,
Huang
,
H.
, and
Durstock
,
M. F.
,
2017
, “
3D Printable Ceramic–Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries With Enhanced Thermal Stability
,”
Adv. Energy Mater.
,
7
(
14
), p.
1602920
.
5.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
6.
Shi
,
C.
,
Dai
,
J.
,
Shen
,
X.
,
Peng
,
L.
,
Li
,
C.
,
Wang
,
X.
,
Zhang
,
P.
, and
Zhao
,
J.
,
2016
, “
A High-Temperature Stable Ceramic-Coated Separator Prepared With Polyimide Binder/Al2O3 Particles for Lithium-Ion Batteries
,”
J. Membr. Sci.
,
517
, pp.
91
99
.
7.
Kim
,
P. S.
,
Le Mong
,
A.
, and
Kim
,
D.
,
2020
, “
Thermal, Mechanical, and Electrochemical Stability Enhancement of Al2O3 Coated Polypropylene/Polyethylene/Polypropylene Separator via Poly (Vinylidene Fluoride)-Poly (Ethoxylated Pentaerythritol Tetra-Acrylate) Semi-Interpenetrating Network Binder
,”
J. Membr. Sci.
,
612
, p.
118481
.
8.
Qi
,
W.
,
Lu
,
C.
,
Chen
,
P.
,
Han
,
L.
,
Yu
,
Q.
, and
Xu
,
R.
,
2012
, “
Electrochemical Performances and Thermal Properties of Electrospun Poly (Phthalazinone Ether Sulfone Ketone) Membrane for Lithium-Ion Battery
,”
Mater. Lett.
,
66
(
1
), pp.
239
241
.
9.
Zhu
,
C.
,
Nagaishi
,
T.
,
Shi
,
J.
,
Lee
,
H.
,
Wong
,
P. Y.
,
Sui
,
J.
,
Hyodo
,
K.
, and
Kim
,
I. S.
,
2017
, “
Enhanced Wettability and Thermal Stability of a Novel Polyethylene Terephthalate-Based Poly (Vinylidene Fluoride) Nanofiber Hybrid Membrane for the Separator of Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
9
(
31
), pp.
26400
26406
.
10.
De Moraes
,
A. C.
,
Hyun
,
W. J.
,
Luu
,
N. S.
,
Lim
,
J. M.
,
Park
,
K. Y.
, and
Hersam
,
M. C.
,
2020
, “
Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
12
(
7
), pp.
8107
8114
.
11.
Juang
,
R. S.
,
Hsieh
,
C. T.
,
Chen
,
P. A.
, and
Chen
,
Y. F.
,
2015
, “
Microwave-Assisted Synthesis of Titania Coating Onto Polymeric Separators for Improved Lithium-Ion Battery Performance
,”
J. Power Sources
,
286
, pp.
526
533
.
12.
Raja
,
M.
,
Angulakshmi
,
N.
,
Thomas
,
S.
,
Kumar
,
T. P.
, and
Stephan
,
A. M.
,
2014
, “
Thin, Flexible and Thermally Stable Ceramic Membranes as Separator for Lithium-Ion Batteries
,”
J. Membr. Sci.
,
471
, pp.
103
109
.
13.
Li
,
H.
,
Li
,
L.
,
Zheng
,
S.
,
Wang
,
X.
, and
Ma
,
Z.
,
2019
, “
High Temperature Resistant Separator of PVDF-HFP/DBP/C-TiO2 for Lithium-Ion Batteries
,”
Materials
,
12
(
17
), p.
2813
.
14.
Li
,
Y.
,
Zhang
,
W.
,
Dou
,
Q.
,
Wong
,
K. W.
, and
Ng
,
K. M.
,
2019
, “
Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Composite Polymer Electrolytes for Lithium Metal Batteries
,”
J. Mater. Chem. A
,
7
(
7
), pp.
3391
3398
.
15.
Zhang
,
X.
,
Liu
,
T.
,
Zhang
,
S.
,
Huang
,
X.
,
Xu
,
B.
,
Lin
,
Y.
,
Xu
,
B.
,
Li
,
L.
,
Nan
,
C. W.
, and
Shen
,
Y.
,
2017
, “
Synergistic Coupling Between Li6.75La3Zr1.75Ta0.25O12 and Poly (Vinylidene Fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes
,”
J. Am. Chem. Soc.
,
139
(
39
), pp.
13779
13785
.
16.
Lim
,
Y. J.
,
Kim
,
H. W.
,
Lee
,
S. S.
,
Kim
,
H. J.
,
Kim
,
J.-K.
,
Jung
,
Y.-G.
, and
Kim
,
Y.
,
2015
, “
Ceramic-Based Composite Solid Electrolyte for Lithium-Ion Batteries
,”
ChemPlusChem
,
80
(
7
), pp.
1100
1103
.
17.
Jung
,
Y. C.
,
Kim
,
S. K.
,
Kim
,
M. S.
,
Lee
,
J. H.
,
Han
,
M. S.
,
Kim
,
D. H.
,
Shin
,
W. C.
,
Ue
,
M.
, and
Kim
,
D. W.
,
2015
, “
Ceramic Separators Based on Li+-Conducting Inorganic Electrolyte for High-Performance Lithium-Ion Batteries With Enhanced Safety
,”
J. Power Sources
,
293
, pp.
675
683
.
18.
Zhao
,
E.
,
Ma
,
F.
,
Guo
,
Y.
, and
Jin
,
Y.
,
2016
, “
Stable LATP/LAGP Double-Layer Solid Electrolyte Prepared via a Simple Dry-Pressing Method for Solid State Lithium Ion Batteries
,”
RSC Adv.
,
6
(
95
), pp.
92579
92585
.
19.
Kou
,
Z.
,
Miao
,
C.
,
Wang
,
Z.
,
Mei
,
P.
,
Zhang
,
Y.
,
Yan
,
X.
,
Jiang
,
Y.
, and
Xiao
,
W.
,
2019
, “
Enhanced Ionic Conductivity of Novel Composite Polymer Electrolytes With Li1.3Al0.3Ti1.7(PO4)3 NASICON-Type Fast Ion Conductor Powders
,”
Solid State Ionics
,
338
, pp.
138
143
.
20.
Shi
,
X.
,
Ma
,
N.
,
Wu
,
Y.
,
Lu
,
Y.
,
Xiao
,
Q.
,
Li
,
Z.
, and
Lei
,
G.
,
2018
, “
Fabrication and Electrochemical Properties of LATP/PVDF Composite Electrolytes for Rechargeable Lithium-Ion Battery
,”
Solid State Ionics
,
325
, pp.
112
119
.
21.
Liang
,
X.
,
Han
,
D.
,
Wang
,
Y.
,
Lan
,
L.
, and
Mao
,
J.
,
2018
, “
Preparation and Performance Study of a PVDF–LATP Ceramic Composite Polymer Electrolyte Membrane for Solid-State Batteries
,”
RSC Adv.
,
8
(
71
), pp.
40498
40504
.
22.
Jin
,
Y.
,
Liu
,
C.
,
Jia
,
Z.
,
Zong
,
X.
,
Li
,
D.
,
Fu
,
M.
,
Wei
,
J.
, and
Xiong
,
Y.
,
2021
, “
Building a Highly Functional Li1.3Al0.3Ti1.7(PO4)3/Poly (Vinylidene Fluoride) Composite Electrolyte for All-Solid-State Lithium Batteries
,”
J. Alloys Compd.
,
874
, p.
159890
.
23.
Park
,
H.
,
Lee
,
E. G.
,
Kim
,
D.
,
Kang
,
Y.
, and
Choi
,
S.
,
2020
, “
Development of Free-Standing Phosphate/Polymer Composite Electrolyte Films for Room Temperature Operating Li+ Rechargeable Solid-State Battery
,”
Solid State Ionics
,
344
, p.
115137
.
24.
Xia
,
Y.
,
Wang
,
X.
,
Xia
,
X.
,
Xu
,
R.
,
Zhang
,
S.
,
Wu
,
J.
,
Liang
,
Y.
,
Gu
,
C.
, and
Tu
,
J.
,
2017
, “
A Newly Designed Composite Gel Polymer Electrolyte Based on Poly (Vinylidene Fluoride-Hexafluoropropylene)(PVDF-HFP) for Enhanced Solid-State Lithium-Sulfur Batteries
,”
Chem.–A Eur. J.
,
23
(
60
), pp.
15203
15209
.
25.
Li
,
Y.
, and
Wang
,
H.
,
2021
, “
Composite Solid Electrolytes With NASICON-Type LATP and PVdF–HFP for Solid-State Lithium Batteries
,”
Ind. Eng. Chem. Res.
,
60
(
3
), pp.
1494
1500
.
26.
Li
,
S.
,
Li
,
N.
, and
Sun
,
C.
,
2021
, “
A Flexible Three-Dimensional Composite Nanofiber Enhanced Quasi-Solid Electrolyte for High-Performance Lithium Metal Batteries
,”
Inorg. Chem. Front.
,
8
(
2
), pp.
361
367
.
27.
Key
,
B.
,
Schroeder
,
D. J.
,
Ingram
,
B. J.
, and
Vaughey
,
J. T.
,
2012
, “
Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries
,”
Chem. Mater.
,
24
(
2
), pp.
287
293
.
28.
McNealy
,
B. E.
, and
Hertz
,
J. L.
,
2014
, “
On the Use of the Constant Phase Element to Understand Variation in Grain Boundary Properties
,”
Solid State Ionics
,
256
, pp.
52
60
.
29.
Mohammadi
,
F.
,
Nickchi
,
T.
,
Attar
,
M. M.
, and
Alfantazi
,
A.
,
2011
, “
EIS Study of Potentiostatically Formed Passive Film on 304 Stainless Steel
,”
Electrochim. Acta
,
56
(
24
), pp.
8727
8733
.
30.
Renna
,
L. A.
,
Blanc
,
F. G.
, and
Giordani
,
V.
,
2020
, “
Interface Modification of Lithium Metal Anode and Solid-State Electrolyte With Gel Electrolyte
,”
J. Electrochem. Soc.
,
167
(
7
), p.
070542
.
31.
Osaka
,
N.
,
Yanagi
,
K.
, and
Saito
,
H.
,
2013
, “
The Optical Transparency and Structural Change of Quenched Poly (Vinylidene Fluoride) Caused by Cold-Drawing
,”
Polym. J.
,
45
(
10
), pp.
1033
1040
.
32.
Li
,
W.
,
Xing
,
Y.
,
Xing
,
X.
,
Li
,
Y.
,
Yang
,
G.
, and
Xu
,
L.
,
2013
, “
PVDF-Based Composite Microporous Gel Polymer Electrolytes Containing a Novelsingle Ionic Conductor SiO2 (Li+)
,”
Electrochim. Acta
,
112
, pp.
183
190
.
33.
Mariappan
,
C. R.
,
Gellert
,
M.
,
Yada
,
C.
,
Rosciano
,
F.
, and
Roling
,
B.
,
2012
, “
Grain Boundary Resistance of Fast Lithium ion Conductors: Comparison Between a Lithium-Ion Conductive Li–Al–Ti–P–O-Type Glass Ceramic and a Li1.5Al0.5Ge1.5P3O12 Ceramic
,”
Electrochem. Commun.
,
14
(
1
), pp.
25
28
.
34.
Breuer
,
S.
,
Prutsch
,
D.
,
Ma
,
Q.
,
Epp
,
V.
,
Preishuber-Pflügl
,
F.
,
Tietz
,
F.
, and
Wilkening
,
M.
,
2015
, “
Separating Bulk From Grain Boundary Li Ion Conductivity in the Sol–Gel Prepared Solid Electrolyte Li1.5Al0.5Ti1.5(PO4)3
,”
J. Mater. Chem. A
,
3
(
42
), pp.
21343
21350
.
35.
Waetzig
,
K.
,
Rost
,
A.
,
Langklotz
,
U.
,
Matthey
,
B.
, and
Schilm
,
J.
,
2016
, “
An Explanation of the Microcrack Formation in Li1.3Al0.3Ti1.7(PO4)3 Ceramics
,”
J. Eur. Ceram. Soc.
,
36
(
8
), pp.
1995
2001
.
36.
Poltimäe
,
T.
,
2011
,
Thermal Analysis of Crystalization Behaviour of Polyethylene Copolymers and Their Blends
,
TTU Press
,
Tallinn
.
37.
Miao
,
M.
,
Wei
,
C.
,
Wang
,
Y.
, and
Qian
,
Y.
,
2018
, “
Effect of Compatibilizer on the Interface Bonding of Graphene Oxide/Polypropylene Composite Fibers
,”
Polymers
,
10
(
11
), p.
1283
.
38.
Wang
,
M.
,
Hu
,
J.
,
Wang
,
Y.
, and
Cheng
,
Y.-T.
,
2019
, “
The Influence of Polyvinylidene Fluoride (PVDF) Binder Properties on LiNi0.33Co0.33Mn0.33O2(NMC) Electrodes Made by a Dry-Powder-Coating Process
,”
J. Electrochem. Soc.
,
166
(
10
), p.
A2151
.
39.
Schneider
,
S. J.
, and
McDaniel
,
C. L.
,
1967
, “
Effect of Environment Upon the Melting Point of Al2O3
,”
J. Res. Natl. Bureau Standards. Sect.A, Phys. Chem.
,
71
(
4
), p.
317
.
40.
DeLisio
,
J. B.
,
Hu
,
X.
,
Wu
,
T.
,
Egan
,
G. C.
,
Young
,
G.
, and
Zachariah
,
M. R.
,
2016
, “
Probing the Reaction Mechanism of Aluminum/Poly (Vinylidene Fluoride) Composites
,”
J. Phys. Chem. B
,
120
(
24
), pp.
5534
5542
.
41.
Ke
,
X.
,
Guo
,
S.
,
Zhang
,
G.
,
Zhou
,
X.
,
Xiao
,
L.
,
Hao
,
G.
,
Wang
,
N.
, and
Jiang
,
W.
,
2018
, “
Safe Preparation, Energetic Performance and Reaction Mechanism of Corrosion-Resistant Al/PVDF Nanocomposite Films
,”
J. Mater. Chem. A
,
6
(
36
), pp.
17713
17723
.
42.
Guo
,
Z.
,
Zhu
,
J.
,
Feng
,
J.
, and
Du
,
S.
,
2015
, “
Direct In Situ Observation and Explanation of Lithium Dendrite of Commercial Graphite Electrodes
,”
RSC Adv.
,
5
(
85
), pp.
69514
69521
.
43.
Hubble
,
D.
,
Brown
,
D. E.
,
Zhao
,
Y.
,
Fang
,
C.
,
Lau
,
J.
,
McCloskey
,
B. D.
, and
Liu
,
G.
,
2022
, “
Liquid Electrolyte Development for Low-Temperature Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
15
(
2
), pp.
550
578
.
44.
Davoodabadi
,
A.
,
Jin
,
C.
,
Wood
D. L.
, III
,
Singler
,
T. J.
, and
Li
,
J.
,
2020
, “
On Electrolyte Wetting Through Lithium-Ion Battery Separators
,”
Extreme Mech. Lett.
,
40
, p.
100960
.
45.
Zheng
,
F.
,
Kotobuki
,
M.
,
Song
,
S.
,
Lai
,
M. O.
, and
Lu
,
L.
,
2018
, “
Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries
,”
J. Power Sources
,
389
, pp.
198
213
.
46.
Makhov
,
S. V.
, and
Ivanishchev
,
A. V.
,
2020
, “
Long-Term Cycling Behavior of Electrospun Separators for Lithium-Ion Batteries: A Comparison With Conventional Separators
,”
Energies
,
13
(
9
), p.
2183
.
47.
Ahn
,
J.
,
Kim
,
M.
,
Seo
,
J.
,
Yoon
,
S.
, and
Cho
,
K. Y.
,
2023
, “
Delineating the Relationship Between Separator Parameters and Practical Lithium Metal Batteries Characteristics
,”
J. Power Sources
,
566
, p.
232931
.
You do not currently have access to this content.