Abstract

Due to its excellent theoretical specific capacity, the transition metal oxide Fe2O3 has garnered significant attention due to its potential as a cathode material. Nevertheless, Fe2O3 remains a drawback due to low electrical conductivity and significant volume expansion in the charge and discharge process. In this experiment, we have reported a facile strategy for the Fe2O3 nanowire array grown on carbon cloth (Fe2O3@CC) by hydrothermal method. The prepared Fe2O3@CC composite served as an electrode for lithium-ion batteries (LIBs) and supercapacitors. Herein, we utilized the above-mentioned unique composite of Fe2O3@CC nanowire array supported on carbon cloth as a repetitive and directional composite of anode electrode composite with a high specific surface area. The supercapacitor exhibited a specific capacitance of 221.19 F g−1 after 500 cycles at a current density of 200 mA g−1. Fe2O3@CC nanowire composite was utilized in LIBs, demonstrating an exceptional rate capacity of 240.7 mAh g−1 at a high current density of 500 mA g−1, as well as a high reversible degree of 514.1 mAh g−1 after 100 cycles at 100 mA g−1.

References

1.
Liu
,
Z.
,
Wu
,
Z.-S.
,
Yang
,
S.
,
Dong
,
R.
,
Feng
,
X.
, and
Müllen
,
K.
,
2016
, “
Ultraflexible In-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene
,”
Adv. Mater.
,
28
(
11
), pp.
2217
2222
.
2.
Li
,
Y.
,
Kang
,
L.
,
Bai
,
G.
,
Li
,
P.
,
Deng
,
J.
,
Liu
,
X.
,
Yang
,
Y.
,
Gao
,
F.
, and
Liang
,
W.
,
2014
, “
Solvothermal Synthesis of Fe2O3 Loaded Activated Carbon as Electrode Materials for High-Performance Electrochemical Capacitors
,”
Electrochim. Acta
,
134
(
1
), pp.
67
75
.
3.
Alexandreli
,
M.
,
Brocchi
,
C. B.
,
Soares
,
D. M.
,
Nunes
,
W. G.
,
Freitas
,
B. G.
,
de Oliveira
,
F. E. R.
,
Schiavo
,
L. E. C. A.
,
Peterlevitz
,
A. C.
,
da Silva
,
L. M.
, and
Zanin
,
H.
,
2021
, “
Pseudocapacitive Behaviour of Iron Oxides Supported on Carbon Nanofibers as a Composite Electrode Material for Aqueous-Based Supercapacitors
,”
J. Energy Storage
,
42
(
14
), p.
103052
.
4.
Lu
,
X.
,
Liu
,
T.
,
Zhai
,
T.
,
Wang
,
G.
,
Yu
,
M.
,
Xie
,
S.
,
Ling
,
Y.
,
Liang
,
C.
,
Tong
,
Y.
, and
Li
,
Y.
,
2014
, “
Improving the Cycling Stability of Metal–Nitride Supercapacitor Electrodes With a Thin Carbon Shell
,”
Adv. Energy Mater.
,
4
(
4
), p.
1300994
.
5.
Han
,
X.
,
Ge
,
J.
,
Luo
,
J.
,
Wang
,
Y.
,
Zhao
,
X.
,
Zhang
,
F.
, and
Lei
,
X.
,
2022
, “
Construction of Vacancies-Enriched CuS/Fe2O3 With Nano-Heterojunctions as Negative Electrode for Flexible Solid-State Supercapacitor
,”
J. Alloys Compd.
,
916
(
25
), p.
165443
.
6.
Chen
,
Y.
,
Kang
,
C.
,
Ma
,
L.
,
Fu
,
L.
,
Li
,
G.
,
Hu
,
Q.
, and
Liu
,
Q.
,
2021
, “
MOF-Derived Fe2O3 Decorated With MnO2 Nanosheet Arrays as Anode for High Energy Density Hybrid Supercapacitor
,”
Chem. Eng. J.
,
417
(
3
), p.
129243
.
7.
Kim
,
J.
,
Choi
,
M. S.
,
Shin
,
K. H.
,
Kota
,
M.
,
Kang
,
Y.
,
Lee
,
S.
,
Lee
,
J. Y.
, and
Park
,
H. S.
,
2019
, “
Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture
,”
Adv. Mater.
,
31
(
34
), p.
1803444
.
8.
Hu
,
H.
,
Guan
,
B. Y.
, and
Lou
,
X. W.
,
2016
, “
Construction of Complex CoS Hollow Structures With Enhanced Electrochemical Properties for Hybrid Supercapacitors
,”
Chem
,
1
, pp.
102
113
.
9.
Bonsu
,
J. O.
, and
Han
,
J. I.
,
2020
, “
Sucrose-Templated Interconnected Meso/Macro-Porous 2D Symmetric Graphitic Carbon Networks as Supports for α-Fe2O3 Towards Improved Supercapacitive Behavior
,”
RSC Adv.
,
10
(
27
), pp.
5
6
.
10.
Radhakrishnan
,
S.
,
Krishnamoorthy
,
K.
,
Sekar
,
C.
,
Wilson
,
J.
, and
Kim
,
S. J.
,
2014
, “
A Highly Sensitive Electrochemical Sensor for Nitrite Detection Based on Fe2O3 Nanoparticles Decorated Reduced Graphene Oxide Nanosheets
,”
Appl. Catal., B
,
148−149
(
1
), pp.
22
28
.
11.
Nasibi
,
M.
,
Golozar
,
M. A.
, and
Rashed
,
G.
,
2012
, “
Nano Iron Oxide (Fe2O3)/Carbon Black Electrodes for Electrochemical Capacitors
,”
Mater. Lett.
,
85
(
6
), pp.
40
43
.
12.
Jiang
,
T.
,
Bu
,
F.
,
Feng
,
X.
,
Shakir
,
I.
,
Hao
,
G.
, and
Xu
,
Y.
,
2017
, “
Porous Fe2O3 Nanoframeworks Encapsulated Within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery
,”
ACS Nano
,
11
(
5
), pp.
5140
5147
.
13.
Wu
,
S.
,
Jin
,
Y.
,
Wang
,
D.
,
Xu
,
Z.
,
Li
,
L.
,
Zou
,
X.
,
Zhang
,
M.
,
Wang
,
Z.
, and
Yang
,
H.
,
2023
, “
Fe2O3/Carbon Derived From Peanut Shell Hybrid as an Advanced Anode for High Performance Lithium Ion Batteries
,”
J. Energy Storage
,
68
(
15
), p.
107731
.
14.
Wang
,
F.
,
Li
,
T.
,
Fang
,
Y.
,
Wang
,
Z.
, and
Zhu
,
J.
,
2021
, “
Heterogeneous Structured Mn2O3/Fe2O3 Composite as Anode Material for High Performance Lithium Ion Batteries
,”
J. Alloys Compd.
,
857
(
15
), p.
157531
.
15.
Yin
,
L.
,
Gao
,
Y. J.
,
Jeon
,
I.
,
Yang
,
H.
,
Kim
,
J.-P.
,
Jeong
,
S. Y.
, and
Cho
,
C. R.
,
2019
, “
Rice-Panicle-Like γ-Fe2O3@C Nanofibers as High-Rate Anodes for Superior Lithium-Ion Batteries
,”
Chem. Eng. J.
,
356
(
6
), pp.
60
68
.
16.
Li
,
C.
,
Lin
,
Y.
,
Li
,
X.
,
Li
,
Z.
,
Luo
,
P.
,
Jin
,
Y.
, and
Li
,
Z.
,
2023
, “
Effect of Co-Doping Concentration on α-Fe2O3/Graphene as Anode Materials for Lithium Ion Batteries
,”
Colloids Surf., A
,
660
(
1
), p.
130681
.
17.
Salunkhe
,
R. R.
,
Kaneti
,
Y. V.
, and
Yamauchi
,
Y.
,
2017
, “
Metal–Organic Framework-Derived Nanoporous Metal Oxides Toward Supercapacitor Applications: Progress and Prospects
,”
ACS Nano
,
11
(
6
), pp.
5293
5308
.
18.
Attia
,
S. Y.
,
Barakat
,
Y. F.
,
Hassan
,
H. H.
, and
Mohamed
,
S. G.
,
2020
, “
A Single-Step Synthesis and Direct Growth of Microspheres Containing the Nanoflakes-Like Structure of Zn0.76Co0.24S as a High-Performance Electrode for Supercapacitors
,”
J. Energy Storage
,
29
(
1
), p.
101349
.
19.
Shao
,
Y.
,
El-Kady
,
M. F.
,
Wang
,
L. J.
,
Zhang
,
Q.
,
Li
,
Y.
,
Wang
,
H.
,
Mousavi
,
M. F.
, and
Kaner
,
R. B.
,
2015
, “
ChemInform Abstract: Graphene-Based Materials for Flexible Supercapacitors
,”
ChemInform
,
46
(
30
), pp.
55
56
.
20.
Gnana Sundara Raj
,
B.
,
Ko
,
T. H.
,
Acharya
,
J.
,
Seo
,
M.-K.
,
Khil
,
M.-S.
,
Kim
,
H.-Y.
, and
Kim
,
B.-S.
,
2020
, “
A Novel Fe2O3-Decorated N-Doped CNT Porous Composites Derived From Tubular Polypyrrole With Excellent Rate Capability and Cycle Stability as Advanced Supercapacitor Anode Materials
,”
Electrochim. Acta
,
334
(
20
), p.
135627
.
21.
Ji
,
J.
,
Zhang
,
L. L.
,
Ji
,
H.
,
Li
,
Y.
,
Zhao
,
X.
,
Bai
,
X.
,
Fan
,
X.
,
Zhang
,
F.
, and
Ruoff
,
R. S.
,
2013
, “
Nanoporous Ni(OH)2 Thin Film on 3D Ultrathin-Graphite Foam for Asymmetric Supercapacitor
,”
ACS Nano
,
7
(
7
), pp.
6237
6243
.
22.
Zou
,
Z.
,
Xiao
,
W.
,
Zhang
,
Y.
,
Yu
,
H.
, and
Zhou
,
W.
,
2020
, “
Facile Synthesis of Freestanding Cellulose/RGO/Silver/Fe2O3 Hybrid Film for Ultrahigh-Areal-Energy-Density Flexible Solid-State Supercapacitor
,”
Appl. Surf. Sci.
,
500
(
15
), p.
144244
.
23.
Zhang
,
S.
,
Yin
,
B.
,
Wang
,
Z.
, and
Peter
,
F.
,
2016
, “
Super Long-Life all Solid-State Asymmetric Supercapacitor Based on NiO Nanosheets and α-Fe2O3 Nanorods
,”
Chem. Eng. J.
,
306
(
29
), pp.
193
203
.
24.
Zheng
,
X.
,
Han
,
Z.
,
Chai
,
F.
,
Qu
,
F.
, and
Wu
,
X.
,
2016
, “
Flexible Heterostructured Supercapacitor Electrodes Based on α-Fe2O3 Nanosheets With Excellent Electrochemical Performances
,”
Dalton Trans.
,
45
(
32
), p.
12862
.
25.
Gao
,
Y.
,
Jin
,
H.
,
Lin
,
Q.
,
Li
,
X.
,
Tavakoli
,
M. M.
,
Leung
,
S. F.
,
Tang
,
W. M.
,
Zhou
,
L.
,
Lai
,
H.
, and
Chan
,
W.
,
2017
, “
Highly Flexible and Transferable Supercapacitors With Ordered Three-Dimensional MnO2 /Au/MnO2 Nanospike Arrays
,”
J. Mater. Chem. A
,
MA2015-02
(
31
), p.
1161
.
26.
Lin
,
F.
, and
Wang
,
H.
,
2015
, “
Fe2O3–SnO2–Graphene Films as Flexible and Binder-Free Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Res.
,
30
(
18
), pp.
2736
2746
.
27.
Liu
,
S.
,
Wang
,
R.
,
Liu
,
M.
,
Luo
,
J.
,
Jin
,
X.
,
Sun
,
J.
, and
Gao
,
L.
,
2014
, “
Fe2O3@SnO2 Nanoparticle Decorated Graphene Flexible Films as High-Performance Anode Materials for Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
2
(
13
), pp.
4598
4604
.
28.
Luo
,
P.
,
Yu
,
J.
,
Shi
,
Z.
,
Wang
,
F.
,
Liu
,
L.
,
Huang
,
H.
,
Zhao
,
Y.
,
Wang
,
H.
,
Li
,
G.
, and
Zou
,
Y.
,
2012
, “
Fabrication and Supercapacitive Properties of Fe2O3@C Nanocomposites
,”
Mater. Lett.
,
80
(
80
), pp.
121
123
.
29.
Fang
,
H.
,
Zou
,
W.
,
Yan
,
J.
,
Xing
,
Y.
, and
Zhang
,
S.
,
2018
, “
Facile Fabrication of Fe2O3 Nanoparticles Anchored on Carbon Nanotubes as High-Performance Anode for Lithium-Ion Batteries
,”
ChemElectroChem
,
5
(
17
), pp.
2458
2463
.
30.
Guo
,
J.
,
Wang
,
S.
,
Sun
,
X.
,
Guo
,
R.
,
Xiong
,
K.
,
Ling
,
R.
,
Shen
,
K.
, et al
,
2021
, “
Uniform α-Fe2O3 Nanoparticles With Narrow gap Immobilized on CNTs Through N-Doped Carbon as High-Performance Lithium-Ion Batteries Anode
,”
Ceram. Int.
,
47
(
11
), pp.
15743
15749
.
31.
Zhang
,
J.
,
Huang
,
T.
,
Liu
,
Z.
, and
Yu
,
A.
,
2013
, “
Mesoporous Fe2O3 Nanoparticles as High Performance Anode Materials for Lithium-Ion Batteries
,”
Electrochem. Commun.
,
29
(
13
), pp.
17
20
.
32.
Luo
,
S. H.
,
Hu
,
D. B.
,
Liu
,
H.
,
Li
,
J. Z.
, and
Yi
,
T. F.
,
2019
, “
Hydrothermal Synthesis and Characterization of α-Fe2O3/C Using Acid-Pickled Iron Oxide Red for Li-Ion Batteries
,”
J. Hazard. Mater.
,
368
, pp.
714
721
.
You do not currently have access to this content.