Graphical Abstract Figure

Geometric models of the BTMSs: (a) LC, (b) LC-VC, (c) LC-2VCs, (d) liquid cooling plate, (e) vapor chamber, and (f) cooling fins

Graphical Abstract Figure

Geometric models of the BTMSs: (a) LC, (b) LC-VC, (c) LC-2VCs, (d) liquid cooling plate, (e) vapor chamber, and (f) cooling fins

Close modal

Abstract

An efficient battery thermal management system (BTMS) is critical for ensuring the performance and lifespan of the battery module. To enhance the module’s thermal performance, a new liquid cooling (LC) system integrating with vapor chambers for a cylindrical battery module is proposed in this article. Systematically, numerical studies are carried out to compare the performance of three BTMSs: LC, liquid cooling with vapor chamber (LC-VC), and liquid cooling with two-end vapor chambers (LC-2VCs). Results highlight that integrating VC reduces the maximum temperature of the battery module (Tmax) and shows a preferable temperature distribution. It is detected that LC-VC displays excellent temperature uniformity performance along a coolant flow path with the maximum temperature difference (ΔTmax) of 6.65 K at a 3C discharge rate compared to the LC case with ΔTmax of 9.18 K. However, it still suffers from a noticeable temperature gradient from the top to the bottom thermal transfer paths. In contrast, LC-2VCs further enhances the temperature uniformity with ΔTmax of 4.72 K and controls Tmax of 306.89 K. Then, the effects of the battery axial thermal conductivity, VC effective thermal conductivity, fin height, and inlet velocity on the cooling performance of LC-VC and LC-2VCs are examined. Finally, the cooling performance under optimal conditions is compared to initial conditions. The results show that Tmax and ΔTmax for LC-2VCs are controlled at 305.58 K and 3.51 K under 3C discharge rate, and reduce by 1.31 K and 1.21 K, respectively, compared to initial conditions.

References

1.
Tang
,
Z.
,
Xiang
,
Y.
,
Li
,
M.
, and
Cheng
,
J.
,
2024
, “
A Novel Liquid Cooling Battery Thermal Management System With a Cooling Plate Based on Biomimetic Fractal Channels
,”
J. Electrochem. Energy Convers.
,
21
(
4
), p.
041002
.
2.
Zhang
,
W.
,
Qiu
,
J.
,
Yin
,
X.
, and
Wang
,
D.
,
2020
, “
A Novel Heat Pipe Assisted Separation Type Battery Thermal Management System Based on Phase Change Material
,”
Appl. Therm. Eng.
,
165
(
2
), p.
114571
.
3.
Guo
,
Z.
,
Xu
,
Q.
, and
Ni
,
M.
,
2023
, “
A Numerical Study on the Battery Thermal Management System With Mini-channel Cold Plate Considering Battery Aging Effect
,”
Appl. Therm. Eng.
,
219
(
1
), p.
119564
.
4.
Yi
,
F.
,
Gan
,
Y.
, and
Li
,
R.
,
2024
, “
Experimental Investigation on Battery Thermal Management With Ultra-thin Vapor Chamber
,”
Appl. Therm. Eng.
,
244
(
5
), p.
122668
.
5.
Qin
,
P.
,
Liao
,
M.
,
Zhang
,
D.
,
Liu
,
Y.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
Experimental and Numerical Study on a Novel Hybrid Battery Thermal Management System Integrated Forced-Air Convection and Phase Change Material
,”
Energy Convers. Manage.
,
195
(
9
), pp.
1371
1381
.
6.
Chen
,
K.
,
Wu
,
W.
,
Yuan
,
F.
,
Chen
,
L.
, and
Wang
,
S.
,
2019
, “
Cooling Efficiency Improvement of Air-Cooled Battery Thermal Management System Through Designing the Flow Pattern
,”
Energy
,
167
(
1
), pp.
781
790
.
7.
Ding
,
Y.
,
Zheng
,
Y.
,
Li
,
S.
,
Dong
,
T.
,
Gao
,
Z.
,
Zhang
,
T.
,
Li
,
W.
, et al
,
2023
, “
A Review of Battery Thermal Management Methods for Electric Vehicles
,”
J. Electrochem. Energy Convers.
,
20
(
2
), p.
021002
.
8.
Ji
,
H.
,
Luo
,
T.
,
Dai
,
L.
,
He
,
Z.
, and
Wang
,
Q.
,
2023
, “
Topology Design of Cold Plates for Pouch Battery Thermal Management Considering Heat Distribution Characteristics
,”
Appl. Therm. Eng.
,
224
(
4
), p.
119940
.
9.
Suresh Patil
,
M.
,
Seo
,
J.-H.
, and
Lee
,
M.-Y.
,
2021
, “
A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management
,”
Energy Convers. Manage.
,
229
(
2
), p.
113715
.
10.
Yin
,
S.
,
Zhao
,
W.
,
Tang
,
Y.
,
Li
,
H.
,
Huang
,
H.
,
Ji
,
W.
, and
Zhang
,
S.
,
2024
, “
Ultra-thin Vapour Chamber Based Heat Dissipation Technology for Lithium-Ion Battery
,”
Appl. Energy
,
358
(
3
), p.
122591
.
11.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-channel Cooling
,”
Energy Convers. Manage.
,
126
(
10
), pp.
622
631
.
12.
Wiriyasart
,
S.
,
Hommalee
,
C.
,
Sirikasemsuk
,
S.
,
Prurapark
,
R.
, and
Naphon
,
P.
,
2020
, “
Thermal Management System With Nanofluids for Electric Vehicle Battery Cooling Modules
,”
Case Stud. Therm. Eng.
,
18
(
4
), p.
100583
.
13.
Yue
,
Q. L.
,
He
,
C. X.
,
Wu
,
M. C.
,
Xu
,
J. B.
, and
Zhao
,
T. S.
,
2022
, “
Pack-Level Modeling of a Liquid Cooling System for Power Batteries in Electric Vehicles
,”
Int. J. Heat Mass Transfer
,
192
(
8
), p.
122946
.
14.
Sun
,
S.
,
Ma
,
C.
,
Wang
,
X.
,
Yang
,
Y.
, and
Mei
,
J.
,
2024
, “
Design and Optimisation of a Novel Serpentine Flow Channel With Branch Structure
,”
Energy
,
293
(
4
), p.
130494
.
15.
Gao
,
R.
,
Fan
,
Z.
, and
Liu
,
S.
,
2022
, “
A Gradient Channel-Based Novel Design of Liquid-Cooled Battery Thermal Management System for Thermal Uniformity Improvement
,”
J. Energy Storage
,
48
(
4
), p.
104014
.
16.
Lai
,
C.
,
Shan
,
S.
,
Feng
,
S.
,
Chen
,
Y.
,
Zeng
,
J.
,
Song
,
J.
, and
Fu
,
L.
,
2023
, “
Numerical Investigations on Heat Transfer Enhancement and Energy Flow Distribution for Interlayer Battery Thermal Management System Using Tesla-Valve Mini-channel Cooling
,”
Energy Convers. Manage.
,
280
(
3
), p.
116812
.
17.
Luo
,
Y.
,
Tang
,
Y.
,
Zhang
,
X.
,
Wang
,
H.
,
Zhou
,
G.
, and
Bai
,
P.
,
2022
, “
A Novel Composite Vapor Chamber for Battery Thermal Management System
,”
Energy Convers. Manage.
,
254
(
2
), p.
115293
.
18.
Kharabati
,
S.
, and
Saedodin
,
S.
,
2024
, “
A Systematic Review of Thermal Management Techniques for Electric Vehicle Batteries
,”
J. Energy Storage
,
75
(
1
), p.
109586
.
19.
Wang
,
Y.
,
Mu
,
X.
,
Xie
,
Y.
,
Li
,
W.
,
Dan
,
D.
,
Qian
,
Y.
, and
Zhang
,
Y.
,
2023
, “
A Coupled Model and Thermo-electrical Performance Analysis for Flat Heat Pipe-Based Battery Thermal Management System
,”
Appl. Therm. Eng.
,
233
(
10
), p.
121116
.
20.
Li
,
Y.
,
Guo
,
H.
,
Qi
,
F.
,
Guo
,
Z.
,
Li
,
M.
, and
Bertling Tjernberg
,
L.
,
2021
, “
Investigation on Liquid Cold Plate Thermal Management System With Heat Pipes for LiFePO4 Battery Pack in Electric Vehicles
,”
Appl. Therm. Eng.
,
185
(
2
), p.
116382
.
21.
Zeng
,
W.
,
Niu
,
Y.
,
Li
,
S.
,
Hu
,
S.
,
Mao
,
B.
, and
Zhang
,
Y.
,
2022
, “
Cooling Performance and Optimization of a New Hybrid Thermal Management System of Cylindrical Battery
,”
Appl. Therm. Eng.
,
217
(
11
), p.
119171
.
22.
Gou
,
J.
, and
Liu
,
W.
,
2019
, “
Feasibility Study on a Novel 3D Vapor Chamber Used for Li-Ion Battery Thermal Management System of Electric Vehicle
,”
Appl. Therm. Eng.
,
152
(
4
), pp.
362
369
.
23.
Han
,
X.
, and
Lv
,
Y.
,
2022
, “
Design and Dynamic Performance of a Concentrated Photovoltaic System With Vapor Chambers Cooling
,”
Appl. Therm. Eng.
,
201
(
1
), p.
117824
.
24.
He
,
G.
,
Sheng
,
Y.
,
Ye
,
G.
,
He
,
B.
,
Yu
,
B.
,
Tian
,
M.
,
Jian
,
Q.
, and
Yu
,
X.
,
2023
, “
Heat Transfer Performance Analysis of an Ultra-thin Aluminum Vapor Chamber With Serrated Microgrooves
,”
Appl. Therm. Eng.
,
229
(
7
), p.
120604
.
25.
Yan
,
C.
,
Li
,
H.
,
Tang
,
Y.
,
Ding
,
X.
,
Yuan
,
X.
,
Liang
,
Y.
, and
Zhang
,
S.
,
2023
, “
A Novel Ultra-thin Vapor Chamber With Composite Wick for Portable Electronics Cooling
,”
Appl. Therm. Eng.
,
226
(
5
), p.
120340
.
26.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Li
,
Y.
, and
Chen
,
H.
,
2019
, “
Fabrication and Thermal Performance of Mesh-Type Ultra-thin Vapor Chambers
,”
Appl. Therm. Eng.
,
162
(
11
), p.
114263
.
27.
Gu
,
Z.
,
Yang
,
K.
,
Liu
,
H.
,
Zhou
,
X.
,
Xu
,
H.
, and
Zhang
,
L.
,
2024
, “
Enhancing Heat Transfer Performance of Aluminum-Based Vapor Chamber With a Novel Bionic Wick Structure Fabricated Using Additive Manufacturing
,”
Appl. Therm. Eng.
,
247
(
6
), p.
123076
.
28.
Li
,
W.
,
Li
,
L.
,
Cui
,
W.
, and
Guo
,
M.
,
2021
, “
Experimental Investigation on the Thermal Performance of Vapor Chamber in a Compound Liquid Cooling System
,”
Int. J. Heat Mass Transfer
,
170
(
5
), p.
121026
.
29.
Cheng
,
J.
,
Shuai
,
S.
,
Tang
,
Z.
, and
Changfa
,
T.
,
2023
, “
Thermal Performance of a Lithium-Ion Battery Thermal Management System With Vapor Chamber and Minichannel Cold Plate
,”
Appl. Therm. Eng.
,
222
(
3
), p.
119694
.
30.
Khan
,
S. A.
,
Hussain
,
I.
,
Thakur
,
A. K.
,
Yu
,
S.
,
Lau
,
K. T.
,
He
,
S.
,
Dong
,
K.
, et al.
,
2024
, “
Advancements in Battery Thermal Management System for Fast Charging/Discharging Applications
,”
Energy Storage Mater.
,
65
(
2
), p.
103144
.
31.
Huang
,
H.
,
Wang
,
H.
,
Gu
,
J.
, and
Wu
,
Y.
,
2019
, “
High-Dimensional Model Representation-Based Global Sensitivity Analysis and the Design of a Novel Thermal Management System for Lithium-Ion Batteries
,”
Energy Convers. Manage.
,
190
(
6
), pp.
54
72
.
32.
Liao
,
G.
,
Wang
,
W.
,
Zhang
,
F.
,
E
,
J.
,
Chen
,
J.
, and
Leng
,
E.
,
2022
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System Based on Nanofluid
,”
Appl. Therm. Eng.
,
216
(
11
), p.
118997
.
33.
Immonen
,
E.
, and
Hurri
,
J.
,
2021
, “
Incremental Thermo-electric CFD Modeling of a High-Energy Lithium-Titanate Oxide Battery Cell in Different Temperatures: A Comparative Study
,”
Appl. Therm. Eng.
,
197
(
10
), p.
117260
.
34.
Gu
,
S.
,
2021
, “
Multi-objective Optimization Design of Thermal Management System Based on Channelled Liquid Flow
,”
Master's thesis
,
Hunan University
,
Changsha, Hunan
(in China).
35.
Gan
,
Y.
,
He
,
L.
,
Liang
,
J.
,
Tan
,
M.
,
Xiong
,
T.
, and
Li
,
Y.
,
2020
, “
A Numerical Study on the Performance of a Thermal Management System for a Battery Pack With Cylindrical Cells Based on Heat Pipes
,”
Appl. Therm. Eng.
,
179
(
10
), p.
115740
.
36.
Liu
,
T.
,
Yan
,
W.
,
Yang
,
X.
, and
Wang
,
S.
,
2022
, “
Improving the Thermal Performance of Thin Vapor Chamber by Optimizing Screen Mesh Wick Structure
,”
Therm. Sci. Eng. Prog.
,
36
(
12
), p.
101535
.
37.
Li
,
Y.
,
Qi
,
F.
,
Guo
,
H.
,
Guo
,
Z.
,
Xu
,
G.
, and
Liu
,
J.
,
2019
, “
Numerical Investigation of Thermal Runaway Propagation in a Li-Ion Battery Module Using the Heat Pipe Cooling System
,”
Numer. Heat Transfer Part A
,
75
(
3
), pp.
183
199
.
38.
Poplaski
,
L. M.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2016
, “
Analysis of Internal and External Thermal Resistances of Heat Pipes Including Fins Using a Three-Dimensional Numerical Simulation
,”
Int. J. Heat Mass Transfer
,
102
(
11
), pp.
455
469
.
39.
Wang
,
Y.
,
Dan
,
D.
,
Zhang
,
Y.
,
Qian
,
Y.
,
Panchal
,
S.
,
Fowler
,
M.
,
Li
,
W.
,
Tran
,
M. K.
, and
Xie
,
Y.
,
2022
, “
A Novel Heat Dissipation Structure Based on Flat Heat Pipe for Battery Thermal Management System
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15961
15980
.
40.
An
,
Z.
,
Chen
,
X.
,
Zhao
,
L.
, and
Gao
,
Z.
,
2019
, “
Numerical Investigation on Integrated Thermal Management for a Lithium-Ion Battery Module With a Composite Phase Change Material and Liquid Cooling
,”
Appl. Therm. Eng.
,
163
(
12
), p.
114345
.
41.
Zhang
,
Z.
, and
Wei
,
K.
,
2020
, “
Experimental and Numerical Study of a Passive Thermal Management System Using Flat Heat Pipes for Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
166
(
2
), p.
114660
.
42.
Li
,
L.
,
Ling
,
L.
,
Xie
,
Y.
,
Zhou
,
W.
,
Wang
,
T.
,
Zhang
,
L.
,
Bei
,
S.
,
Zheng
,
K.
, and
Xu
,
Q.
,
2023
, “
Comparative Study of Thermal Management Systems With Different Cooling Structures for Cylindrical Battery Modules: Side-Cooling Vs. Terminal-Cooling
,”
Energy
,
274
(
7
), p.
127414
.
43.
Xie
,
N.
,
Zhang
,
Y.
,
Liu
,
X.
,
Luo
,
R.
,
Liu
,
Y.
, and
Ma
,
C.
,
2023
, “
Thermal Performance and Structural Optimization of a Hybrid Thermal Management System Based on MHPA/PCM/Liquid Cooling for Lithium-Ion Battery
,”
Appl. Therm. Eng.
,
235
(
11
), p.
121341
.
You do not currently have access to this content.