Abstract

An optimized cathode catalyst layer (CCL) design can improve fuel cell performance. In this study, we tried to optimize the structure by investigating the electrochemical properties of ion and mass transport through various CCL structures with ionomer layer (IL) added using simulation numerical analysis. In the simulation, an electrochemical calculation was performed on the structure with polymer electrolyte membrane (PEM) and IL of CCL using the multiblock model. The simulation was conducted by changing the aspect ratio (AR) structure of the width and height of IL to five conditions so that IL is evenly distributed in the catalyst layer (CL). The result confirmed that the CL 3D IL AR 4.9 structure with the highest aspect ratio showed good performance. In addition, cell performance improved as the uniform reaction area with protons conducting through IL increased and the resistance of protons decreased. Finally, cell performance was predicted based on changes in oxygen concentration (OC), relative humidity (RH), and ionomer/carbon (I/C) ratio. This numerical analysis can show the reaction according to environmental and structural changes and design an optimized structure to improve cell performance.

References

1.
Williams
,
M. C.
,
Strakey
,
J.
, and
Sudoval
,
W.
,
2006
, “
U.S. DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
,
159
(
2
), pp.
1241
1247
.
2.
Sopian
,
K.
, and
Wan Daud
,
W. R.
,
2006
, “
Challenges and Future Developments in Proton Exchange Membrane Fuel Cells
,”
Renew. Energy
,
31
(
5
), pp.
719
727
.
3.
Mehta
,
V.
, and
Cooper
,
J. S.
,
2003
, “
Review and Analysis of PEM Fuel Cell Design and Manufacturing
,”
J. Power Sources
,
114
(
1
), pp.
32
53
.
4.
Okur
,
O.
,
Iyigün Karadaǧ
,
Ç
,
Boyaci San
,
F. G.
,
Okumuş
,
E.
, and
Behmenyar
,
G.
,
2013
, “
Optimization of Parameters for Hot-Pressing Manufacture of Membrane Electrode Assembly for PEM (Polymer Electrolyte Membrane Fuel Cells) Fuel Cell
,”
Energy
,
57
, pp.
574
580
.
5.
Debe
,
M. K.
,
2012
, “
Electrocatalyst Approaches and Challenges for Automotive Fuel Cells
,”
Nature
,
486
(
7401
), pp.
43
51
.
6.
Park
,
K.
,
Wei
,
Y.
,
So
,
M.
,
Noh
,
T. H.
,
Kimura
,
N.
,
Tsuge
,
Y.
, and
Inoue
,
G.
2021
, “
Influence of Surface Structure on Performance of Inkjet Printed Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
1
), p.
010910
.
7.
Harada
,
M.
,
Takata
,
S. I.
,
Iwase
,
H.
,
Kajiya
,
S.
,
Kadoura
,
H.
, and
Kanaya
,
T.
,
2021
, “
Distinguishing Adsorbed and Deposited Ionomers in the Catalyst Layer of Polymer Electrolyte Fuel Cells Using Contrast-Variation Small-Angle Neutron Scattering
,”
ACS Omega
,
6
(
23
), pp.
15257
15263
.
8.
Jung
,
H. M.
,
Lee
,
W. Y.
,
Park
,
J. S.
, and
Kim
,
C. S.
,
2004
, “
Numerical Analysis of a Polymer Electrolyte Fuel Cell
,”
Int. J. Hydrogen Energy
,
29
(
9
), pp.
945
954
.
9.
Ismail
,
M. S.
,
Ingham
,
D. B.
,
Hughes
,
K. J.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2015
, “
Effective Diffusivity of Polymer Electrolyte Fuel Cell Gas Diffusion Layers: An Overview and Numerical Study
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
10994
11010
.
10.
Shin
,
S.
,
Maiyalagan
,
T.
,
Jothi
,
V. R.
,
Jung
,
C. Y.
, and
Yi
,
S. C.
,
2021
, “
Numerical Analysis on Transport Properties of Self-Humidifying Dual Catalyst Layer via 3-D Reconstruction Technique
,”
Int. J. Hydrogen Energy
,
46
(
27
), pp.
14639
14650
.
11.
Randall
,
C. R.
, and
DeCaluwe
,
S. C.
,
2020
, “
Physically Based Modeling of PEMFC Cathode Catalyst Layers: Effective Microstructure and Ionomer Structure–Property Relationship Impacts
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
4
), p.
041006
.
12.
Wang
,
G.
,
Mukherjee
,
P. P.
, and
Wang
,
C.-Y.
,
2007
, “
Optimization of Polymer Electrolyte Fuel Cell Cathode Catalyst Layers via Direct Numerical Simulation Modeling
,”
Electrochim. Acta
,
52
(
22
), pp.
6367
6377
.
13.
Choi
,
J.
,
Yeon
,
J. H.
,
Yook
,
S. H.
,
Shin
,
S.
,
Kim
,
J. Y.
, and
Choi
,
M.
,
2021
, “
Multifunctional Nafion/CeO2 Dendritic Structures for Enhanced Durability and Performance of Polymer Electrolyte Membrane Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
13
(
1
), pp.
806
815
.
14.
So
,
M.
,
Ohnishi
,
T.
,
Park
,
K.
,
Ono
,
M.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2019
, “
The Effect of Solvent and Ionomer on Agglomeration in Fuel Cell Catalyst Inks: Simulation by the Discrete Element Method
,”
Int. J. Hydrogen Energy
,
44
(
54
), pp.
28984
28995
.
15.
Inoue
,
G.
,
Yokoyama
,
K.
,
Ooyama
,
J.
,
Terao
,
T.
,
Tokunaga
,
T.
,
Kubo
,
N.
, and
Kawase
,
M
.
2016
, “
Theoretical Examination of Effective Oxygen Diffusion Coefficient and Electrical Conductivity of Polymer Electrolyte Fuel Cell Porous Components
,”
J. Power Sources
,
327
, pp.
610
621
.
16.
So
,
M.
,
Park
,
K.
,
Ohnishi
,
T.
,
Ono
,
M.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2019
, “
A Discrete Particle Packing Model for the Formation of a Catalyst Layer in Polymer Electrolyte Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
60
), pp.
32170
32183
.
17.
Noh
,
T.
,
Park
,
K.
,
Gao
,
R.
,
Kimura
,
N.
,
Inoue
,
G.
, and
Tsuge
,
Y.
,
2022
, “
Effect of Double-Sided, 3D-Patterned Cathode Catalyst Layers on Polymer Electrolyte Fuel Cell Performance
,”
Energies
,
15
(
3
), p.
1179
.
18.
Inoue
,
G.
, and
Kawase
,
M.
,
2016
, “
Effect of Porous Structure of Catalyst Layer on Effective Oxygen Diffusion Coefficient in Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
327
, pp.
1
10
.
19.
Inoue
,
G.
,
Ohnishi
,
T.
,
So
,
M.
,
Park
,
K.
,
Ono
,
M.
, and
Tsuge
,
Y.
,
2019
, “
Simulation of Carbon Black Aggregate and Evaluation of Ionomer Structure on Carbon in Catalyst Layer of Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
439
, p.
227060
.
20.
Park
,
K.
,
So
,
M.
,
Goto
,
M.
,
Takenaka
,
S.
,
Tsuge
,
Y.
, and
Inoue
,
G.
,
2021
, “
Numerical Analysis of Silica Coating Effect on Pt Cathode Catalyst in Polymer Electrolyte Fuel Cells
,”
J. Chem. Eng. Japan
,
54
(
5
), pp.
226
231
.
21.
Limjeerajarus
,
N.
,
Yanagimoto
,
T.
,
Ohashi
,
H.
,
Ito
,
T.
, and
Yamaguchi
,
T.
,
2009
, “
Polymer Electrolyte Fuel Cell Modeling Considering Catalyst Activity and a Microscopic Reaction Phenomenon: Coverage of Oxygen-Containing Species
,”
J. Chem. Eng. Japan
,
42
(
10
), pp.
771
781
.
22.
Subramanian
,
N. P.
,
Greszler
,
T. A.
,
Zhang
,
J.
,
Gu
,
W.
, and
Makharia
,
R.
,
2012
, “
Pt-Oxide Coverage-Dependent Oxygen Reduction Reaction (ORR) Kinetics
,”
J. Electrochem. Soc.
,
159
(
5
), pp.
B531
B540
.
23.
Parthasarathy
,
A.
,
Srinivasan
,
S.
,
Appleby
,
A. J.
, and
Martin
,
C. R.
,
1992
, “
Pressure Dependence of the Oxygen Reduction Reaction at the Platinum Microelectrode/Nafion Interface: Electrode Kinetics and Mass Transport
,”
J. Electrochem. Soc.
,
139
(
10
), pp.
2856
2862
.
24.
Jomori
,
S.
,
Nonoyama
,
N.
, and
Yoshida
,
T.
,
2012
, “
Analysis and Modeling of PEMFC Degradation: Effect on Oxygen Transport
,”
J. Power Sources
,
215
, pp.
18
27
.
You do not currently have access to this content.