Abstract

With the rapid development of the global electric vehicle (EV) market, accurately predicting charging times is of significant importance for promoting the widespread adoption of EVs and enhancing the efficiency of charging infrastructure. Existing prediction methods often disregard battery aging and predominantly use single-model approaches, resulting in limited predictive accuracy. This article proposes a multimodel fusion-based method for predicting EV charging times. The approach utilizes data from ten EVs across various regions and operational conditions. Driving segment data are used to identify the ohmic internal resistance of the equivalent circuit model as a battery health indicator, employing the forgetting factor recursive least squares method. Key features such as state of charge, current, and ambient temperature are also extracted. Initial charging time predictions are generated using XGBoost, LightGBM, and CatBoost models and are subsequently fused using a random forest model to improve accuracy and robustness. Experimental results demonstrate that the proposed method achieves superior prediction performance under both fast and slow charging strategies, with a root mean square error of 0.130 h and a mean absolute percentage error of 5.676%. This research introduces a robust approach for enhancing the accuracy of EV charging time predictions.

References

1.
Zahoor
,
A.
,
Yu
,
Y.
,
Zhang
,
H.
,
Nihed
,
B.
,
Afrane
,
S.
,
Peng
,
S.
,
Sápi
,
A.
,
Lin
,
C. J.
, and
Mao
,
G.
,
2023
, “
Can the New Energy Vehicles (NEVs) and Power Battery Industry Help China to Meet the Carbon Neutrality Goal Before 2060?
,”
J. Environ. Manage.
,
336
, p.
117663
.
2.
Pasha
,
J.
,
Li
,
B.
,
Elmi
,
Z.
,
Fathollahi-Fard
,
A. M.
,
Lau
,
Y.
,
Roshani
,
A.
,
Kawasaki
,
T.
, and
Dulebenets
,
M. A.
,
2024
, “
Electric Vehicle Scheduling: State of the Art, Critical Challenges, and Future Research Opportunities
,”
J. Ind. Inf. Integr.
,
38
, p.
100561
.
3.
Ullah
,
I.
,
Zheng
,
J.
,
Jamal
,
A.
,
Zahid
,
M.
,
Almoshageh
,
M.
, and
Safdar
,
M.
,
2024
, “
Electric Vehicles Charging Infrastructure Planning: A Review
,”
Int. J. Green Energy
,
21
(
7
), pp.
1710
1728
.
4.
Gnanavendan
,
S.
,
Selvaraj
,
S. K.
,
Dev
,
S. J.
,
Mahato
,
K. K.
,
Swathish
,
R. S.
,
Sundaramali
,
G.
,
Accouche
,
O.
, and
Azab
,
M.
,
2024
, “
Challenges, Solutions and Future Trends in EV-Technology: A Review
,”
IEEE Access
,
12
, pp.
17242
17260
.
5.
Xiao
,
D.
,
An
,
S.
,
Cai
,
H.
,
Wang
,
J.
, and
Cai
,
H.
,
2020
, “
An Optimization Model for Electric Vehicle Charging Infrastructure Planning Considering Queuing Behavior With Finite Queue Length
,”
J. Energy Storage
,
29
, p.
101317
.
6.
Nazghelichi
,
T.
,
Torabi
,
F.
, and
Esfahanian
,
V.
,
2021
, “
Reducing the Charging Time of a Lead–Acid Cell in the Sense of Linear Stability Analysis
,”
J. Energy Storage
,
36
, p.
102369
.
7.
Shi
,
J.
,
Tian
,
M.
,
Han
,
S.
,
Wu
,
T.
, and
Tang
,
Y.
,
2022
, “
Electric Vehicle Battery Remaining Charging Time Estimation Considering Charging Accuracy and Charging Profile Prediction
,”
J. Energy Storage
,
49
, p.
104132
.
8.
Bi
,
J.
,
Wang
,
Y.
,
Sun
,
S.
, and
Guan
,
W.
,
2018
, “
Predicting Charging Time of Battery Electric Vehicles Based on Regression and Time-Series Methods: A Case Study of Beijing
,”
Energies
,
11
(
5
), p.
1040
.
9.
Yang
,
H.
, and
Wu
,
S.
,
2022
, “
Prediction of Remaining Time of Tram Charging Based on Bi-GRU
,”
Proceedings of the 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers
,
Dalian, China
,
Apr. 14–16
, Association for Computing Machinery, New York, pp.
521
524
.
10.
Ullah
,
I.
,
Liu
,
K.
,
Yamamoto
,
T.
,
Shafiullah
,
M.
, and
Jamal
,
A.
,
2022
, “
Grey Wolf Optimizer-Based Machine Learning Algorithm to Predict Electric Vehicle Charging Duration Time
,”
Transp. Lett. Int. J. Transp. Res.
,
15
(
8
), pp.
889
906
.
11.
Ullah
,
I.
,
Liu
,
K.
,
Yamamoto
,
T.
,
Zahid Khattak
,
M.
, and
Jamal
,
A.
,
2022
, “
Prediction of Electric Vehicle Charging Duration Time Using Ensemble Machine Learning Algorithm and Shapley Additive Explanations
,”
Int. J. Energy Res.
,
46
(
11
), pp.
15211
15230
.
12.
Sun
,
J.
,
Fan
,
C.
, and
Yan
,
H.
,
2024
, “
SOH Estimation of Lithium-Ion Batteries Based on Multi-Feature Deep Fusion and XGBoost
,”
Energy
,
306
, p.
132429
.
13.
Jiao
,
Z.
,
Wang
,
H.
,
Xing
,
J.
,
Yang
,
Q.
,
Yang
,
M.
,
Zhou
,
Y.
, and
Zhao
,
J.
,
2023
, “
LightGBM-Based Framework for Lithium-Ion Battery Remaining Useful Life Prediction Under Driving Conditions
,”
IEEE Trans. Ind. Informat.
,
19
(
11
), pp.
11353
11362
.
14.
Li
,
R.
,
Hong
,
J.
,
Zhang
,
H.
, and
Chen
,
X.
,
2022
, “
Data-Driven Battery State of Health Estimation Based on Interval Capacity for Real-World Electric Vehicles
,”
Energy
,
257
, p.
124771
.
15.
Lin
,
M.
,
Wu
,
D.
,
Meng
,
J.
,
Wu
,
J.
, and
Wu
,
H.
,
2022
, “
A Multi-Feature-Based Multi-Model Fusion Method for State of Health Estimation of Lithium-Ion Batteries
,”
J. Energy Storage
,
518
, p.
230774
.
16.
Bai
,
J.
,
Huang
,
J.
,
Luo
,
K.
,
Yang
,
F.
, and
Xian
,
Y.
,
2023
, “
A Feature Reuse Based Multi-Model Fusion Method for State of Health Estimation of Lithium-Ion Batteries
,”
J. Energy Storage
,
70
, p.
107965
.
17.
Liu
,
X.
,
Li
,
S.
,
Tian
,
J.
,
Wei
,
Z.
, and
Wang
,
P.
,
2023
, “
Health Estimation of Lithium-Ion Batteries With Voltage Reconstruction and Fusion Model
,”
Energy
,
282
, p.
128216
.
18.
Zhang
,
W.
,
He
,
H.
,
Li
,
T.
,
Yuan
,
J.
,
Xie
,
Y.
, and
Long
,
Z.
,
2024
, “
Lithium-Ion Battery State of Health Prognostication Employing Multi-Model Fusion Approach Based on Image Coding of Charging Voltage and Temperature Data
,”
Energy
,
296
, p.
131095
.
19.
Chen
,
D.
,
Zheng
,
X.
,
Chen
,
C.
, and
Zhao
,
W.
,
2023
, “
Remaining Useful Life Prediction of the Lithium-Ion Battery Based on CNN-LSTM Fusion Model and Grey Relational Analysis
,”
Electron. Res. Arch.
,
31
(
2
), p.
633
.
20.
Pozzato
,
G.
,
Allam
,
A.
,
Pulvirenti
,
L.
,
Negoita
,
G. A.
,
Paxton
,
W. A.
, and
Onori
,
S.
,
2023
, “
Analysis and Key Findings From Real-World Electric Vehicle Field Data
,”
Joule
,
7
(
9
), pp.
2035
2053
.
21.
Huo
,
Q.
,
Ma
,
Z.
,
Zhao
,
X.
,
Zhang
,
T.
, and
Zhang
,
Y.
,
2021
, “
Bayesian Network Based State-of-Health Estimation for Battery on Electric Vehicle Application and Its Validation Through Real-World Data
,”
IEEE Access
,
9
, pp.
11328
11341
.
22.
Wu
,
X.
,
Hu
,
C.
,
Du
,
J.
, and
Sun
,
J.
,
2015
, “
Multistage CC-CV Charge Method for Li-Ion Battery
,”
Math. Probl. Eng.
,
2015
(
1
), p.
294793
.
23.
Li
,
Y.
,
Li
,
K.
,
Xie
,
Y.
,
Liu
,
J.
,
Fu
,
C.
, and
Liu
,
B.
,
2020
, “
Optimized Charging of Lithium-Ion Battery for Electric Vehicles: Adaptive Multistage Constant Current–Constant Voltage Charging Strategy
,”
Renewable Energy
,
146
, pp.
2688
2699
.
24.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2019
, “
A Review on the Key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
100005
.
25.
Yang
,
B.
,
Qian
,
Y.
,
Li
,
Q.
,
Chen
,
Q.
,
Wu
,
J.
,
Luo
,
E.
,
Xie
,
R.
, et al
,
2024
, “
Critical Summary and Perspectives on State-of-Health of Lithium-Ion Battery
,”
Renew. Sustain. Energy Rev.
,
190
, p.
114077
.
26.
Hong
,
J.
,
Li
,
K.
,
Liang
,
F.
,
Yang
,
H.
,
Zhang
,
C.
,
Yang
,
Q.
, and
Wang
,
J.
,
2024
, “
A Novel State of Health Prediction Method for Battery System in Real-World Vehicles Based on Gated Recurrent Unit Neural Networks
,”
Energy
,
289
, p.
129918
.
27.
Song
,
L.
,
Zhang
,
K.
,
Liang
,
T.
,
Han
,
X.
, and
Zhang
,
Y.
,
2020
, “
Intelligent State of Health Estimation for Lithium-Ion Battery Pack Based on Big Data Analysis
,”
J. Energy Storage
,
32
, p.
101836
.
28.
He
,
H.
,
Xiong
,
R.
, and
Fan
,
J.
,
2011
, “
Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach
,”
Energies
,
4
(
4
), pp.
582
598
.
29.
Chen
,
L.
,
,
Z.
,
Lin
,
W.
,
Li
,
J.
, and
Pan
,
H.
,
2018
, “
A New State-of-Health Estimation Method for Lithium-Ion Batteries Through the Intrinsic Relationship Between Ohmic Internal Resistance and Capacity
,”
Measurement
,
116
, pp.
586
595
.
30.
Waag
,
W.
,
Käbitz
,
S.
, and
Sauer
,
D. U.
,
2013
, “
Experimental Investigation of the Lithium-Ion Battery Impedance Characteristic at Various Conditions and Aging States and Its Influence on the Application
,”
Appl. Energy
,
102
, pp.
885
897
.
31.
Liao
,
L.
,
Zuo
,
P.
,
Ma
,
Y.
,
Chen
,
X.
,
An
,
Y.
,
Gao
,
Y.
, and
Yin
,
G.
,
2012
, “
Effects of Temperature on Charge/Discharge Behaviors of LiFePO4 Cathode for Li-Ion Batteries
,”
Electrochim. Acta
,
60
, pp.
269
273
.
32.
Usman Tahir
,
M.
,
Sangwongwanich
,
A.
,
Stroe
,
D.-I.
, and
Blaabjerg
,
F.
,
2023
, “
Overview of Multi-Stage Charging Strategies for Li-Ion Batteries
,”
J. Energy Chem.
,
84
, pp.
228
241
.
33.
Kapoor
,
A.
, and
Singhal
,
A.
,
2017
, “
A Comparative Study of K-Means, K-Means++ and Fuzzy C-Means Clustering Algorithms
,”
2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)
,
Ghaziabad, India
,
Feb. 9–10
, pp.
1
6
.
34.
Li
,
Z.
,
Han
,
X.
,
Lu
,
L.
, and
Ouyang
,
M.
,
2011
, “
Temperature Characteristics of Power LiFePO4 Batteries
,”
JME
,
47
(
18
), p.
115
.
35.
Wang
,
B.
,
Min
,
H.
,
Sun
,
W.
, and
Yu
,
Y.
,
2021
, “
Research on Optimal Charging of Power Lithium-Ion Batteries in Wide Temperature Range Based on Variable Weighting Factors
,”
Energies
,
14
(
6
), p.
1776
.
36.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco CA
,
Aug. 13–17
, Association for Computing Machinery, New York, pp.
785
794
.
37.
Ke
,
G.
,
Meng
,
Q.
,
Finley
,
T.
,
Wang
,
T.
,
Chen
,
W.
,
Ma
,
W.
,
Ye
,
Q.
, and
Liu
,
T.-Y.
,
2017
, “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,”
Advances in Neural Information Processing Systems
, Vol.
30
,
Curran Associates, Inc
,
New York
, pp.
3146
3154
.
38.
Prokhorenkova
,
L.
,
Gusev
,
G.
,
Vorobev
,
A.
,
Dorogush
,
A. V.
, and
Gulin
,
A.
,
2018
, “
CatBoost: Unbiased Boosting With Categorical Features,
Advances in Neural Information Processing Systems
, Vol.
31
,
Curran Associates, Inc
,
New York
, pp.
6638
6648
.
39.
Li
,
Y.
,
Zou
,
C.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Chan
,
J. C.-W.
,
van den Bossche
,
P.
,
Van Mierlo
,
J.
, and
Omar
,
N.
,
2018
, “
Random Forest Regression for Online Capacity Estimation of Lithium-Ion Batteries
,”
Appl. Energy
,
232
, pp.
197
210
.
40.
Wu
,
J.
,
Chen
,
X.-Y.
,
Zhang
,
H.
,
Xiong
,
L.-D.
,
Lei
,
H.
, and
Deng
,
S.-H.
,
2019
, “
Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimizationb
,”
J. Electron. Sci. Technol.
,
17
(
1
), pp.
26
40
.
41.
Delgado-Panadero
,
Á
,
Hernández-Lorca
,
B.
,
García-Ordás
,
M. T.
, and
Benítez-Andrades
,
J. A.
,
2022
, “
Implementing Local-Explainability in Gradient Boosting Trees: Feature Contribution
,”
Inf. Sci.
,
589
, pp.
199
212
.
You do not currently have access to this content.