Temperature is a key parameter of fuel cell efficiency. In air cooled fuel cell stacks, large temperature disparities are observed. This temperature distribution has a significant influence on cell behavior in the stack, resulting in voltage disparities. The aim of this study, thus, is to correlate the temperature distribution in the stack to local voltage degradations, such as membrane drying and electrodes flooding. Indeed, the temperature has a strong impact on the water distribution in the cells because the saturation pressure is thermo-dependent. As a result, the hottest cells are prone to drying, whereas the coolest cells tend to be flooded, depending on the operating conditions. Measurements show that while drying, cell voltages decrease slowly and continuously until complete shutdown of the cells, whereas flooding results in quick voltage drops. Under drying conditions, voltage can be improved by increasing the inlet gas humidity or decrease in the stoichiometric ratio. In the case of flooding cells, purging the stack or reducing the inlet gas humidity is necessary to avoid complete shutdown of the cells. Consequently, small cell temperature variations through the stack can be responsible for large voltage variations from one cell to another. The cooling device must thus be optimized to reduce stack temperature nonuniformity.

1.
Hyun
,
D.
, and
Kim
,
J.
, 2004, “
Study of External Humidification Method in Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
126
(
1–2
), pp.
98
103
.
2.
Wu
,
H.
,
Berg
,
P.
, and
Li
,
X.
, 2007, “
Non-Isothermal Transient Modeling of Water Transport in PEM Fuel Cells
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
232
243
.
3.
Fuller
,
T. F.
, and
Newman
,
J.
, 1993, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
140
(
5
), pp.
1218
1225
.
4.
Rowe
,
A.
, and
Li
,
X.
, 2001, “
Mathematical Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
82
96
.
5.
Yan
,
W. -M.
,
Chen
,
F.
,
Wu
,
H. -Y.
,
Soong
,
C. -Y.
, and
Chu
,
H. -S.
, 2004, “
Analysis of Thermal and Water Management With Temperature-Dependent Diffusion Effects in Membrane of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
129
(
2
), pp.
127
137
.
6.
Ramousse
,
J.
,
Didierjean
,
S.
,
Lottin
,
O.
, and
Maillet
,
D.
, 2007, “
Thermal Fields and Saturation Discussion in a PEMFC Single Cell
,”
Proceedings of Hydrogen and Fuel Cell 2007
, Vancouver, Canada, Apr. 29–May 2.
7.
Sena
,
D. R.
,
Ticianelli
,
E. A.
,
Paganin
,
V. A.
, and
Gonzalez
,
E. R.
, 1999, “
Effect of Water Transport in a PEFC at Low Temperatures Operating With Dry Hydrogen
,”
J. Electroanal. Chem.
0022-0728,
477
(
2
), pp.
164
170
.
8.
Shan
,
Y.
, and
Choe
,
S. -Y.
, 2005, “
A High Dynamic PEM Fuel Cell Model With Temperature Effects
,”
J. Power Sources
0378-7753,
145
(
1
), pp.
30
39
.
9.
Van den Oosterkamp
,
P. F.
, 2006, “
Critical Issues in Heat Transfer for Fuel Cell Systems
,”
Energy Convers. Manage.
0196-8904,
47
(
20
), pp.
3552
3561
.
10.
Bao
,
C.
,
Ouyang
,
M.
, and
Yi
,
B.
, 2006, “
Analysis of the Water and Thermal Management in Proton Exchange Membrane Fuel Cell Systems
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
8
), pp.
1040
1057
.
11.
Amphlett
,
J. C.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Robergel
,
P. R.
, 1996, “
A Model Predicting Transient Responses of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
0378-7753,
61
(
1–2
), pp.
183
188
.
12.
Zhang
,
Y.
,
Ouyang
,
M.
,
Lu
,
Q.
,
Luo
,
J.
, and
Li
,
X.
, 2004, “
A Model Predicting Performance of Proton Exchange Membrane Fuel Cell Stack Thermal Systems
,”
Appl. Therm. Eng.
1359-4311,
24
(
4
), pp.
501
513
.
13.
Yu
,
X.
,
Zhou
,
B.
, and
Sobiesiak
,
A.
, 2005, “
Water and Thermal Management for Ballard PEM Fuel Cell Stack
,”
J. Power Sources
0378-7753,
147
(
1–2
), pp.
184
195
.
14.
Graf
,
C.
,
Vath
,
A.
, and
Nicoloso
,
N.
, 2006, “
Modeling of the Heat Transfer in a Portable PEFC System Within MATLAB-Simulink
,”
J. Power Sources
0378-7753,
155
(
1
), pp.
52
59
.
15.
Sohn
,
Y. -J.
,
Park
,
G. -G.
,
Yang
,
T. -H.
,
Yoon
,
Y. -G.
,
Lee
,
W. -Y.
,
Yim
,
S. -D.
, and
Kim
,
C. -S.
, 2005, “
Operating Characteristics of an Air-Cooling PEMFC for Portable Applications
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
604
609
.
16.
Promislow
,
K.
, and
Wetton
,
B.
, 2005, “
A Simple Mathematical Model of Thermal Coupling in Fuel Cell Stacks
,”
J. Power Sources
0378-7753,
150
, pp.
129
135
.
17.
Koh
,
J. -H.
,
Hsu
,
A. T.
,
Akay
,
H. U.
, and
Liou
,
M. -F.
, 2005, “
Analysis of Overall Heat Balance in Self-Heated Proton-Exchange-Membrane Fuel Cells for Temperature Predictions
,”
J. Power Sources
0378-7753,
144
(
1
), pp.
122
128
.
18.
Shan
,
Y.
,
Choe
,
S. -Y.
, and
Choi
,
S. -H.
, 2007, “
Unsteady 2D PEM Fuel Cell Modeling for a Stack Emphasizing Thermal Effects
,”
J. Power Sources
0378-7753,
165
(
1
), pp.
196
209
.
19.
Shan
,
Y.
, and
Choe
,
S. -Y.
, 2006, “
Modeling and Simulation of a PEM Fuel Cell Stack Considering Temperature Effects
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
274
286
.
20.
Fournier
,
M.
,
Agbossou
,
K.
,
Poulin
,
A.
,
Dubé
,
Y.
, and
Simard
,
G.
, 2006, “
Dynamic Model of a PEMFC Stack Suitable for Component Level Modeling of a Fuel Cell Based Generator
,”
Proceedings of the 16th World Hydrogen Energy Conference
, Lyon, France, Jun. 13–16.
21.
Xue
,
X.
, and
Tang
,
J.
, 2005, “
PEM Fuel Cell Dynamic Model With Phase Change Effect
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
, pp.
274
283
.
22.
Djilali
,
N.
, and
Lu
,
D.
, 2002, “
Influence of Heat Transfer on Gas and Water Transport in Fuel Cells
,”
Int. J. Therm. Sci.
1290-0729,
41
(
1
), pp.
29
40
.
23.
Ramousse
,
J.
,
Deseure
,
J.
,
Didierjean
,
S.
,
Lottin
,
O.
, and
Maillet
,
D.
, 2005, “
Modelling of Heat, Mass and Charge Transfer in a PEMFC Single Cell
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
416
427
.
24.
Barbir
,
F.
, 2005,
PEM Fuel Cells: Theory and Practice
,
Elsevier
,
New York
.
25.
Poulin
,
A.
,
Dostie
,
M.
, and
Martel
,
S.
, 2004, “
Modelling the Dynamic Response of a PEM Stack
,”
Proceedings of Fuel Cell Seminar 2004
, San Antonio, TX, Nov. 1–5.
26.
Adzakpa
,
K. P.
,
Agbossou
,
K.
,
Dubé
,
Y.
,
Dostie
,
M.
,
Fournier
,
M.
, and
Poulin
,
A.
, 2008, “
PEM Fuel Cells Modeling and Analysis Through Current and Voltage Transient Behaviors
,”
IEEE Trans. Energy Convers.
0885-8969,
23
(
2
), pp.
581
591
.
27.
Cleghorn
,
S.
,
Kolde
,
J.
, and
Liu
,
W.
, 2003,
Handbook of Fuel Cells—Fundamentals, Technology and Applications
,
Wiley
,
Chichester, UK
, pp.
566
575
.
28.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modelling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell: II. Empirical Model Development
,”
J. Electrochem. Soc.
0013-4651,
142
(
1
), pp.
1
8
.
29.
Yan
,
W. -M.
,
Soong
,
C. -Y.
,
Chen
,
F.
, and
Chu
,
H. -S.
, 2005, “
Transient Analysis of Reactant Gas Transport and Performance of PEM Fuel Cells
,”
J. Power Sources
0378-7753,
143
(
1–2
), pp.
48
56
.
30.
Ramousse
,
J.
,
Didierjean
,
S.
,
Lottin
,
O.
, and
Maillet
,
D.
, 2008, “
Estimation of the Effective Thermal Conductivity of Carbon Felts Used as PEMFC Gas Diffusion Layers
,”
Int. J. Therm. Sci.
1290-0729,
47
(
1
), pp.
1
6
.
31.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
0378-7753,
161
(
2
), pp.
1106
1115
.
32.
Adzakpa
,
K. P.
,
Ramousse
,
J.
,
Dubé
,
Y.
,
Akremi
,
H.
,
Agbossou
,
K.
,
Dostie
,
M.
,
Poulin
,
A.
, and
Fournier
,
M.
, 2008, “
Transient Air Cooling Thermal Modeling of a PEM Fuel Cell
,”
J. Power Sources
0378-7753,
179
(
1
), pp.
164
176
.
You do not currently have access to this content.