Under a U.S. Army program, PCI has developed autothermal reforming catalysts for E85 to provide stable performance in the presence of fuel sulfur as well as corrosion inhibitors. The catalysts build on PCI’s Microlith™ catalyst technology and used PCI’s proprietary formulations. A stable performance was demonstrated through short-term testing (7080h) using high sulfur doped (100ppm) fuel. At 1.11 O:C and 1.25 S:C, nearly complete conversion and 70%+ reforming efficiency (LHV based) were achieved on stabilized catalysts in the presence of 20ppm feed sulfur. The effect of ceria addition into an alumina based support was also examined.

1.
Ethanol: The Complete Energy Lifecycle Picture, ANL’s Technical Service Division, http://www.transportation.anl.gov/pdfs/TA/345.pdf.http://www.transportation.anl.gov/pdfs/TA/345.pdf.
2.
January 2007 State of the Union Requires That 35 Billion Gallons of Gasoline be Replaced With Alternative Fuels.
3.
Executive Order 13423, Released January 2007 Calls for Government Agencies to Lead the Way in Alternative Energy Implementation: Increase Fleet Non-Petroleum Fuel Consumption 10% Annually.
4.
Army Energy and Water Campaign Plan for Installations
,” Department of the Army, August 2006, http://army-energy.hqda.pentagon.mil/programs/plan.asp.http://army-energy.hqda.pentagon.mil/programs/plan.asp.
5.
Freni
,
S.
,
Calogero
,
G.
, and
Cavallaro
,
S.
, 2000, “
Hydrogen Production From Methane Through Catalytic Partial Oxidation Reactions
,”
J. Power Sources
0378-7753,
87
(
1–2
), pp.
28
38
.
6.
Deluga
,
G. A.
,
Salge
,
J. R.
,
Schmidt
,
L. D.
, and
Verykios
,
X. E.
, 2004, “
Renewable Hydrogen From Ethanol by Autothermal Reforming
,”
Science
0036-8075,
303
, pp.
993
997
.
7.
Zhang
,
J.
,
Wang
,
Y.
,
Ma
,
R.
, and
Wu
,
D.
, 2003 “
Characterization of Alumina-Supported Ni and Ni-Pd Catalysts for Partial Oxidation and Steam Reforming of Hydrocarbons
,”
Appl. Catal., A
0926-860X,
243
, pp.
251
259
.
8.
Murata
,
K.
,
Saito
,
M.
,
Inaba
,
M.
, and
Takahara
,
I.
, 2007, “
Hydrogen Production by Autothermal Reforming of Sulfur-containing Hydrocarbons Over Re-modified Ni∕Sr∕ZrO2 catalysts
,”
Appl. Catal., B
0926-3373,
70
, pp.
509
514
.
9.
Ferrandon
,
M.
, and
Krause
,
T.
, 2006, “
Role of the Oxide Support on the Performance of Rh Catalysts for the Autothermal Reforming of Tasoline and Gasoline Surrogates to Hydrogen
,”
Appl. Catal., A
0926-860X,
311
, pp.
135
145
.
10.
Kaila
,
R. K.
, and
Krause
,
A. O. I.
, 2006, “
Autothermal Reforming of Simulated Gasoline and Diesel Fuels
,”
Int. J. Hydrogen Energy
0360-3199,
31
(
13
), pp.
1934
1941
.
11.
Villegas
,
L.
,
Guilhaume
,
N.
,
Provendier
,
H.
,
Daniel
,
C.
,
Masset
,
F.
, and
Mirodatos
,
C.
, 2005, “
A Combined Thermodynamic/Experimental Study for the Optimisation of Hydrogen Production by Catalytic Reforming of Isooctane
,”
Appl. Catal., A
0926-860X,
281
, pp.
75
83
.
12.
Qi
,
A.
,
Wang
,
S.
,
Ni
,
C.
, and
Wu
,
D.
, 2007, “
Autothermal Reforming of Gasoline on Rh-Based Monolithic Catalysts
,”
Int. J. Hydrogen Energy
0360-3199,
32
(
8
), pp.
981
991
.
13.
Fierro
,
V.
,
Klouz
,
V.
,
Akdim
,
O.
, and
Mirodatos
,
C.
, 2002, “
Oxidative Reforming of Biomass Derived Ethanol for Hydrogen Production in Fuel Cell Applications
,”
Catal. Today
0920-5861,
75
(
1–4
), pp.
141
144
.
14.
Salge
,
J. R.
,
Deluga
,
G. A.
, and
Schmidt
,
L. D.
, 2005, “
Catalytic Partial Oxidation of Ethanol Over Noble Metal Catalysts
,”
J. Catal.
0021-9517,
235
(
1
), pp.
69
78
.
15.
Cavallaro
,
S.
,
Chiodo
,
V.
,
Vita
,
A.
, and
Freni
,
S.
, 2003, “
Hydrogen Production by Auto-Thermal Reforming of Ethanol on Rh∕Al2O3 Catalyst
,”
J. Power Sources
0378-7753,
123
(
1
), pp.
10
16
.
16.
Delahay
,
G.
, and
Duprez
,
D.
, 1989, “
Effect of Sulphur on the Coking of Rhodium in the Steam Reforming of 1-Methylnaphthalene
,”
Appl. Catal.
0166-9834,
53
(
1
), pp.
95
105
.
17.
Krause
,
T.
,
Ferrandon
,
M.
,
Mawdsley
,
J.
, and
Ralph
,
J.
, 2004, “
Catalysts for Autothermal Reforming
,” FY 2004 Progress report, DOE Hydrogen Program.
18.
Avci
,
A. K.
,
Trimm
,
D. L.
, and
Onsan
,
Z. I.
, 2001, “
Heterogeneous Reactor Modeling for Simulation of Catalytic Oxidation and Steam Reforming of Methane
,”
Chem. Eng. Sci.
0009-2509,
56
(
2
), pp.
641
649
.
19.
Goralski
,
C. T.
,
O’Connor
,
R. P.
, and
Schmidt
,
L. D.
, 2000, “
Modeling Homogeneous and Heterogeneous Chemistry in the Production of Syngas From Methane
,”
Chem. Eng. Sci.
0009-2509,
55
(
8
), pp.
1357
1370
.
20.
1991, “
Microlith Catalytic Reaction System
,” Patent No. 5,051,241.
21.
Roychoudhury
,
S.
,
Bianchi
,
J.
,
Muench
,
G.
, and
Pfefferle
,
W. C.
, 1997, “
Development and Performance of Microlith™ Light-off Preconverters for LEV/ULEV
,” SAE 971023.
22.
Carter
,
R.
,
Bianchi
,
J.
,
Pfefferle
,
W.
,
Roychoudhury
,
S.
, and
Perry
,
J. J.
, 1997, “
Unique Metal Monolith Catalytic Reactor for Destruction of Airborne Trace Contaminants
,” SAE Paper No. 972432.
23.
Perry
,
J. L.
,
Carter
,
R. N.
, and
Roychoudhury
,
S.
, 1999, “
Demonstration of an Ultra-Short Channel Metal Monolith Catalytic Reactor for Trace Contaminant Control Applications
,” SAE Paper No. 1999-01-2112.
24.
Kraemer
,
G.
,
Pfefferle
,
W. C.
, and
Ritter
,
J.
, 1997, “
A Compact Catalytic Combustor System For Small Turbogenerators
,”
ASME, Proceedings of the International Joint Power Generation Conference
, Vol.
5
, Book No. G01072-1997.
25.
Lyubovsky
,
M.
,
Karim
,
M.
,
Menacherry
,
P.
,
Boorse
,
S.
,
LaPierre
,
R.
,
Pfefferle
,
W. C.
, and
Roychoudhury
,
S.
, 2003, “
Complete and Partial Oxidation of Methane Over Substrates With Enhanced Transport Properties
,”
Catal. Today
0920-5861,
83
, pp.
183
197
.
26.
Lyubovsky
,
M.
,
Roychoudhury
,
S.
, and
LaPierre
,
R.
, 2005, “
Catalytic Partial Oxidation of Methane to Syngas at Elevated Pressures
,”
Catal. Lett.
1011-372X,
99
(
3–4
), pp.
113
117
.
27.
Roychoudhury
,
S.
,
Castaldi
,
M.
,
Lyubovsky
,
M.
,
LaPierre
,
R.
, and
Ahmed
,
S.
, 2005, “
Microlith Catalytic Reactors For Reforming Iso-octane-Based Fuels Into Hydrogen
,”
J. Power Sources
0378-7753,
152
, pp.
75
86
.
28.
Castaldi
,
M. J.
,
LaPierre
,
R.
,
Lyubovski
,
M.
,
Pfefferle
,
W.
, and
Roychoudhury
,
S.
, 2005, “
Effect of Water on Performance and Sizing of Fuel Processing Reactors
,”
Catal. Today
0920-5861,
99
(
3–4
), pp.
339
346
.
29.
Carter
,
R. N.
,
Roychoudhury
,
S.
,
Muench
,
G.
,
Karim
,
H.
, and
Pfefferle
,
W.
, 1997, “
Rapid Thermal Response Catalyst for Treatment of Automotive Exhaust
,”
Mater. Res. Soc. Symp. Proc.
0272-9172,
454
, pp.
273
282
.
30.
Ullah
,
U.
,
Waldram
,
S. P.
,
Bennett
,
C. J.
, and
Truex
,
T.
, 1992, “
Monolithic Reactors: Mass Transfer Measurements Under Reacting Conditions
,”
Chem. Eng. Sci.
0009-2509,
47
(
9–11
), pp.
2413
2418
.
31.
Roychoudhury
,
S.
,
Lyubovsky
,
M.
,
Walsh
,
D.
,
Chu
,
D.
, and
Kallio
,
E.
, 2006, “
Design and Development of a Diesel and JP-8 Logistic Fuel Processor
,”
J. Power Sources
0378-7753,
160
(
1
), pp.
510
513
.
32.
Liguras
,
D. K.
,
Kondarides
,
D. I.
, and
Verykios
,
X. E.
, 2003, “
Production of Hydrogen for Fuel Cells by Steam Reforming of Ethanol Over Supported Noble Metal Catalysts
,”
Appl. Catal., B
0926-3373,
43
(
4
), pp.
345
354
.
33.
Mattos
,
L. V.
, and
Noronha
,
F. B.
, 2005, “
The Influence of the Nature of the Metal on the Performance of Cerium Oxide Supported Catalysts in the Partial Oxidation of Ethanol
,”
J. Power Sources
0378-7753,
152
, pp.
50
59
.
34.
Suzuki
,
T.
,
Iwanami
,
H.
, and
Yomohiro
,
T.
, 2000, “
Steam Reforming of Kerosene on Ru∕Al2O3 Catalyst to Yield Hydrogen
,”
Int. J. Hydrogen Energy
0360-3199,
25
(
2
), pp.
119
126
.
35.
Torbati
,
R.
, 2004, “
6th European Congress on Catalysis, Comprehensive Coverage of Heterogeneous Catalysis and Surface Science From Fundamentals to Industrial Uses
,”
Platinum Met. Rev.
0032-1400,
48
(
2
), pp.
70
71
.
36.
Strohm
,
J. J.
,
Zheng
,
J.
, and
Song
,
C.
, 2006, “
Low-Temperature Steam Reforming of Jet Fuel in the Absence and Presence of Sulfur Over Rh and Rh–Ni Catalysts for Fuel Cells
,”
J. Catal.
0021-9517,
238
(
2
), pp.
309
320
.
37.
Borup
,
R. L.
,
Inbody
,
M. A.
,
Semelsberger
,
T. A.
,
Tafoya
,
J. I.
, and
Guidry
,
D. R.
, 2005, “
Fuel Composition Effects on Transportation Fuel Cell Reforming
,”
Catal. Today
0920-5861,
99
(
3–4
), pp.
263
270
.
38.
Ioannides
,
T.
, 2001, “
Thermodynamic Analysis of Ethanol Processors for Fuel Cell Applications
,”
J. Power Sources
0378-7753,
92
, pp.
17
25
.
You do not currently have access to this content.