Both transient and steady-state experiments are performed to study the single-phase heat transfer characteristics on an array of four in-line, flush-mounted simulated chips in a vertical rectangular channel. Water is the coolant media, and the flow covers the wide range of laminar regimes with the Reynolds number, based on heat source length, from 800 to 2625. The effect of heat fluxes, coolant flow rates, and geometric parameters (such as chip configuration number) are investigated. The operation is extended to study the transient natural convection during an accidental stoppage of coolant flow due to loss of pumping power. Results compare favorably with those obtained from three-dimensional numerical calculations. The transient correlation recommended is Nul=0.3Fo0.2Ral*1/4.

1.
Mudawar, I., 1992, “Direct-Immersion Cooling for High Power Electronic Chips,” Proc. Intersociety Conference on Thermal Phenomena, pp. 74–84.
2.
Siegel
,
R.
, and
Sparrow
,
E. M.
,
1959
, “
Transient Heat Transfer for Laminar Forced Convection in the Thermal Entrance Region of Flat Ducts
,”
ASME J. Heat Transfer
,
81C
, pp.
29
36
.
3.
Siegel
,
R.
,
1959
, “
Transient Heat Transfer for Laminar Slug Flow in Ducts
,”
ASME J. Appl. Mech.
,
81E
, pp.
140
142
.
4.
Siegel
,
R.
, and
Perlmutter
,
M.
,
1963
, “
Laminar Heat Transfer in a Channel With Unsteady Flow and Wall Heating Varying With Position and Time
,”
ASME J. Heat Transfer
,
85C
, pp.
358
365
.
5.
Kim
,
W. S.
, and
O¨zis¸ik
,
M. N.
,
1987
, “
Transient Laminar Forced Convection in Ducts With Suddenly Applied Uniform Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
30
, pp.
1753
1756
.
6.
Yang
,
H. X.
, and
Zhu
,
Z. J.
,
2003
, “
Numerical Study of Transient Laminar Natural Convection in an Inclined Parallel-Walled Channel
,”
Int. Commun. Heat Mass Transfer
,
30
, pp.
359
367
.
7.
Incropera
,
F. P.
,
Kerby
,
J. S.
,
Moffatt
,
D. F.
, and
Ramadhyani
,
S.
,
1986
, “
Convection Heat Transfer From Discrete Heat Sources in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
29
, pp.
1051
1058
.
8.
Willingham
,
T. C.
, and
Mudawar
,
I.
,
1992
, “
Forced Convection Boiling and Critical Heat Flux From a Linear Array of Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2879
2890
.
9.
Heindel
,
T. J.
,
Ramadhyani
,
S. R.
, and
Incropera
,
F. P.
,
1992
, “
Liquid Immersion Cooling of a Longitudinal Array of Discrete Heat Sources in Protruding Substrates: 2-Forced Convection Boiling
,”
ASME J. Electron. Packag.
,
114
, pp.
55
62
.
10.
Heindel
,
T. J.
,
Ramadhyani
,
S. R.
, and
Incropera
,
F. P.
, “
Conjugate Natural Convection From an Array of Discrete Heat Sources: Part 1—Two- and Three-Dimensional Model Validation
,”
Int. J. Heat Fluid Flow
,
16
, pp.
501
510
.
11.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
12.
Perry, J. H., 1963, Chemical Engineer’s Handbook, 4th ed., McGraw-Hill, New York.
13.
Greankoplis, C. J., 1972, Mass Transport Phenomena, Holt, Rinehart & Winston, New York.
14.
Mahaney
,
H. V.
,
Incropera
,
F. P.
, and
Ramadhyani
,
S.
,
1990
, “
Comparison of Predicted and Measured Mixed Convection Heat Transfer From an Array of Discrete Sources in a Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
33
, pp.
1233
1245
.
15.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
,
1990
, “
Heat Transfer Characteristics of an Array of Protruding Elements in Single Phase Forced Convection
,”
Int. J. Heat Mass Transfer
,
33
, pp.
2659
2669
.
16.
Tso
,
C. P.
,
Xu
,
G. P.
, and
Tou
,
K. W.
,
1999
, “
An Experimental Study of Forced Convection Heat Transfer From Flush-Mounted Discrete Heat Sources
,”
ASME J. Heat Transfer
,
121
, pp.
326
332
.
17.
Shah, R. K., and London, A. L., 1978, “Laminar Flow Forced Convection in Ducts,” Advances in Heat Transfer, Academic Press, New York, Supplement No. 1.
18.
Azevedo
,
L. F. A.
, and
Sparrow
,
E. M.
,
1985
, “
Natural Convection in Open-Ended Inclined Channels
,”
ASME J. Heat Transfer
,
107
, pp.
893
601
.
19.
Fluent Inc., 1995, Computational Fluid Dynamics Software, Lebanon, NH.
20.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York.
You do not currently have access to this content.