Flip chip technology is one of the fastest growing segments of electronic packaging with growth being driven by the demands such as cost reduction, increase of input/output density, package size reduction and higher operating speed requirements. Unfortunately, flip chip package design has a significant drawback related to the mismatch of coefficient of thermal expansion (CTE) between the silicon die and the organic substrate, which leads to premature failures of the package. Package reliability can be improved by the application of an underfill. In this paper, we report the development of novel underfill materials utilizing nano-filler technology, which provides a previously unobtainable balance of low CTE and good solder joint formation.

1.
Lau, J. H., 2000, Low Cost Flip Chip Technology for DCA, WLSCP and PBGA Assemblies, McGraw–Hill, New York.
2.
Thorpe, R., Baldwin, D. F., and McGovern, L. P., “High Throughput Flip Chip Processing and Reliability Analysis Using No-Flow Underfills,” Proc. 49th ECTC, San Diego, p. 419.
3.
Shi, S. H., Yamashita, T., and Wong, C. P., 1999, “Development of a Wafer Level Compressive Flow Underfill Process and its Required Materials,” Proc. 49th Electronic Components and Technology Conference, San Diego, CA, pp. 961–966.
4.
Gamota
,
D.
, and
Melton
,
C.
,
1998
, “
Materials to Integrate the Solder Reflow and Underfill Encapsulation Processes for Flip Chip on Board Assembly
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part C
,
21
(
1
), pp.
57
65
.
5.
Liu, J., Kraszewski, R., Lin, X., Wong, L., Goh, S. H., and Allen, J., 2001, “New Developments in Single Pass Reflow Encapsulant for Flip Chip Application,” Int. Symposium on Advanced Packaging Materials, pp. 74–79.
6.
Zhang Z., and Wong, C. P., 2002, “Double Layer No-flow Underfill Materials and Process,” Proc. 52nd Electronic Components and Technology Conference, San Diego, CA, pp. 199–205.
7.
Gross, K., Hackett, S., Larkey, D., Schultz, W., and Thompson, W., 2002, “New Materials for High Performance No-Flow Underfill Materials,” Proc. IMAPS, Denver, pp. 234–238.
8.
Gross, K., Hackett, S., Schultz, W., Thompson, W., Zhang, Z., Fan, L., and Wong, C. P., 2003, “Nanocomposite Underfills for Flip Chip Applications,” 53rd Electronic Components and Technology Conference, New Orleans, pp. 951–956.
9.
Nguyen, L., Nguyen, H., Negasi, A., Tong, Q., and Hong, S. H., 2002, “Wafer Level Underfill-Processing and Reliability,” Proc. SEMICON West 2002, San Jose, CA, pp. 53–62.
10.
Lewis
,
L. N.
,
Early
,
T. A.
,
Larsen
,
M.
,
Williams
,
E. A.
, and
Grande
,
J. C.
,
1995
, “
NMR and Electron Microscopic Investigation of Polymerized Coatings Prepared from Methacrylate-Functionalized Silica in an Acrylic Monomer Matrix
,”
Chem. Mater.
,
7
, pp.
1369
1375
11.
Iler. R., 1979, The Chemistry of Silica, Wiley, New York.
12.
Roscher, C., Adam, J., Eger, C., and Pyrlik, M., 2002, “Novel Radiation Curable Nanocomposites with Outstanding Material Properties,” Proc. RadTech, Indianapolis, IN, p. 321.
13.
Suratwala
,
T. I.
,
Hanna
,
M. L.
,
Miller
,
E. L.
,
Whitman
,
P. K.
,
Thomas
,
I. M.
,
Ehrmann
,
P. R.
,
Maxwell
,
R. S.
, and
Burnham
,
A. K.
,
2003
,
J. Non-Cryst. Solids
,
316
, pp.
349
363
.
14.
Yao Q., Qu J., and Wu, S. X., 1999, Life Prediction, International Microelectronics and Packaging Society, Chicago.
15.
LeGall, C. A., Qu, J., and McDowell, D. L., 1997, “Some Mechanics Issues Related to the Thermomechanical Reliability of Flip Chip Dca With Underfill Encapsulation,” in Application of Fracture Mechanics in Electronic Packaging (Proceedings of the ASME International Mechanical Engineering Congress and Exposition, November 16–21, 1997, Dallas, TX), W. T. Chem and D. T. Read, eds., ASME, New York, pp. 85–95.
16.
Machuga, S. C., Lindsey, S. E., Moore K. D., and Skipor, A. F., 1992, “Encapsulation of Flip Chip Structures,” Electronics Manufacturing Technology Symposium, Thirteenth IEEE/CHMT International, pp. 53–58.
17.
Suryanarayana
,
D.
,
Hsiao
,
R.
,
Gall
,
T. P.
, and
McCreary
,
J. M.
,
1991
, “
Enhancement of Flip-Chip Fatigue Life by Encapsulation
,”
IEEE Trans. Compon. Hybrids, Manuf. Technol.
,
14
(1).
You do not currently have access to this content.