Thermal ground planes (TGPs) are passive thermal management devices that utilize the phase-change of a working fluid to achieve high thermal conductivity and low thermal resistance. TGPs are flat, two-dimensional heat pipes—similar to vapor chambers—in which liquid is held within a capillary wick, and vapor is held in a sealed vapor layer. Heat is absorbed at an evaporator region, causing the liquid to evaporate. The heated vapor in the vapor core is carried via convection to a condenser region where it condenses as the heat is expelled from the TGP to an external heat sink. The condensed liquid is then pulled back to the evaporator via capillary forces in the wick. In numerous applications, mechanical flexibility of the TGP is required, as is low-cost manufacturing and viable integration routes with electronics. This work describes a flexible TGP (FTGP) fabricated using printed circuit board (PCB) technology, in which commercially available copper-cladded polyimide sheets are used as the casing material. The wick is composed of three layers of fine copper mesh electroplated or sintered together and coated with atomic layer deposited TiO2. A coarse nylon or polyether ether ketone (PEEK) mesh defines the vapor transport layer, and water is used as the working fluid. The perimeter of the device is heat-sealed with flouroethylene propylene (FEP), which has been found to provide a near-hermetic seal for several months and is suitable for flexible applications. This architecture allows the TGP to function with minimal reduction in heat transfer performance while bent by 90 deg, and full functionality is returned when the device is returned to its flat configuration. The FTGP's measured thermal resistance is about half that of an equivalent copper reference for input heat fluxes of 3–6 W/cm2. More than 30 copper-cladded polyimide FTGPs were fabricated and characterized using both simple qualitative and more involved quantitative test setups. The results show that the fabrication and assembly processes developed in this work are repeatable and the devices are durable.

References

1.
Peterson
,
G. P.
,
1994
,
An Introduction to Heat Pipes
,
Wiley
,
New York
.
2.
Murakami
,
M.
,
Ogushi
,
T.
,
Sakurai
,
Y.
,
Masumoto
,
H.
,
Furukawa
,
M.
, and
Imai
,
R.
,
1987
, “
Heat Pipe Heat Sink
,”
6th International Heat Pipe Conference
, Vol.
2
, Grenoble, France, May 25–29, pp.
537
542
.
3.
Bar-Cohen
,
A.
,
Matin
,
K.
,
Jankowski
,
N.
, and
Sharar
,
D.
,
2015
, “
Two-Phase Thermal Ground Planes: Technology Development and Parametric Results
,”
ASME J. Electron. Packag.
137
(
1
), p.
010801
.
4.
Kishimoto
,
T.
,
1994
, “
Flexible-Heat-Pipe Cooling for High-Power Devices
,”
Int. J. Microcircuits Electron. Packag.
,
17
(2), pp.
98
107
.
5.
Furukawa
,
2004
, “
Ultra-Thin Sheet-Shaped Heat Pipe ‘Pera-Flex’
,”
Furukawa Review
,
25
, pp.
64
66
.
6.
Amec Thermasol
, 2013, “
Flat Cool Pipes/MHP Series
,” Marcom Electronic Components Limited, Great Yarmouth, Norfolk, UK, accessed Nov. 20, 2016, http://www.amecthermasol.co.uk/datasheets/MHP%20Series.pdf
7.
Oshman
,
C.
,
Li
,
Q.
,
Liew
,
L.-A.
,
Yang
,
R.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2013
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
(
1
), p.
015001
.
8.
Wang
,
L.
,
Sterken
,
T.
,
Cauwe
,
M.
,
Cuypers
,
D.
, and
Vanfleteren
,
J.
,
2012
, “
Fabrication and Characterization of Flexible Ultrathin Chip Package Using Photosensitive Polyimide
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
7
), pp.
1099
1106
.
9.
Jensen
,
R.
,
Cummings
,
J.
, and
Vora
,
H. A. R.
,
1984
, “
Copper/Polyimide Materials System for High Performance Packaging
,”
IEEE Trans. Components, Hybrids, Manuf. Technol.
,
7
(
4
) pp.
384
393
.
10.
Lin
,
S. T.
,
Benoit
,
J. T.
,
Grzybowski
,
R. R.
,
Zou
,
Y. D.
,
Suhling
,
J. C.
, and
Jaeger
,
R. C.
,
1998
, “
High-Temperature Die-Attach Effects on Die Stresses
,”
4th International High-Temperature Electronics Conference
(
IEEE
), Alberquerque, NM, June 14–18, pp.
61
67
.
11.
Katz
,
M.
, and
Theis
,
R. J.
,
1997
, “
New High Temperature Polyimide Insulation for Partial Discharge Resistance in Harsh Environments
,”
IEEE Electr. Insul. Mag.
,
13
(
4
), pp.
24
30
.
12.
Zhu
,
H.
,
Guy
,
Y.
,
Li
,
W.-Y.
,
Tseng
,
A. A.
, and
Martin
,
B.
,
2000
, “
Micro-Mechanical Characterization of Solder Mask Material
,”
3rd Electronics Packaging Technology Conference
(
IEEE
), Singapore, Dec. 5–7, pp.
148
153
.
13.
Goff
,
D. L.
,
Yuan
,
E. L.
,
Long
,
H.
, and
Neuhaus
,
H. J.
,
1989
, “
Organic Dielectric Materials With Reduced Moisture Absorption and Improved Electrical Properties
,”
Polymeric Materials for Electronics Packaging and Interconnection
,
J. H.
Lupinski
and
R. S.
Moore
, eds., Elsevier, Amsterdam, The Netherlands, pp.
93
100
.
14.
Amant
,
N.
,
James
,
N. L.
, and
McKenzie
,
D. R.
,
2010
, “
Welding Methods for Joining Thermoplastic Polymers for the Hermetic Enclosure of Medical Devices
,”
Med. Eng. Phys.
,
32
(
7
), pp.
690
699
.
15.
Newaz
,
G.
,
Sultana
,
T.
,
Nusier
,
S.
, and
Herfurth
,
H. J.
,
2008
, “
Miniaturized Samples for Bond Strength and Hermetic Sealing Evaluation for Transmission Laser Joints
,”
J. Laser Micro Nanoeng.
,
3
(
3
), pp.
186
195
.
16.
Kasemann
,
R.
,
Burkhart
,
T.
, and
Schmidt
,
H.
,
1995
, “
Sol-Gel Synthesis of a Diepoxy-Crosslinked Ormocer Adhesive for Cu/Polyimide Sealing Systems
,”
Sol-Gel Sci. Technol.
,
55
, pp.
307
314
.
17.
Georgiev
,
G. L.
,
Sultana
,
T.
,
Baird
,
R. J.
,
Auner
,
G.
,
Newaz
,
G.
,
Patwa
,
R.
, and
Herfurth
,
H.
,
2009
, “
Laser Bonding and Characterization of Kapton FN/Ti and Teflon FEP/Ti Systems
,”
J. Mater. Sci.
,
44
(
3
), pp.
882
888
.
18.
Accu-Seal Corp.
, 2013, “SencorpWhite Acquires Accu-Seal,” Accu-Seal Corp., San Marcos, CA, accessed Nov. 20, 2016, http://www.accu-seal.com/
19.
Ranjan
,
R.
,
Murthy
,
J. Y.
,
Garimella
,
S. V.
,
Altman
,
D. H.
, and
North
,
T.
,
2012
, “
Modeling and Design Optimization of Ultrathin Vapor Chambers for High Heat Flux Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
2
(
9
), pp.
1465
1479
.
20.
Hossain
,
R. A.
,
Chowdhury
,
M. A. K.
, and
Feroz
,
C. M.
,
2010
, “
Design, Fabrication and Experimental Study of Heat Transfer Characteristics of a Micro Heat Pipe
,”
Jordan J. Mech. Ind. Eng.
,
4
(
5
), pp.
531
542
.
21.
Li
,
C.
,
Peterson
,
G. P.
,
Li
,
J.
, and
Koratkar
,
N.
,
2008
, “
Visualization of Thin Film Evaporation on Thin Micro Sintered Copper Mesh Screen
,”
ASME
Paper No. HT2008-56352.
22.
Walter
,
N. A.
, and
Scialdone
,
J. J.
,
1997
, “
Outgassing Data for Selecting Spacecraft Materials
,”
NASA
Technical Documents, National Aeronautics and Space Administration, Washington, DC.
23.
Li
,
J.
,
Hou
,
Y.
,
liu
,
Y.
,
Hao
,
C.
,
Li
,
M.
Chaudhury
,
M. K.
,
Yao
,
S.
, and
Wang
,
Z.
,
2016
, “
Directional Transport of High-Temperature Janus Droplets Mediated by Structural Topography
,”
Nat. Phys.
,
12
(
6
), pp.
606
613
.
You do not currently have access to this content.