This paper explicitly establishes a modified creep model of a Sn–3.8Ag–0.7Cu alloy using a physical-based micromechanical modeling technique. Through experimentation and reformulation, steady-state creep behavior is analyzed with minimum strain rates for different temperatures 35 °C, 80 °C, and 125 °C. The new modified physical creep model is proposed, by understanding the respective precipitate strengthened deformation mechanism, seeing the dependency of the activation energy over the temperature along with stress and, finally, by integrating the subgrain-size dependency λss. The new model is found to accurately model the creep behavior of lead-free solder alloy by combining the physical state variables. The features of the creep model can be explored further by changing the physical variable such as subgrain size to establish a structure–property relationship for a better solder joint reliability performance.

References

1.
Schubert
,
A.
,
Dudek
,
R.
,
Doring
,
R.
,
Walter
,
H.
,
Auerswald
,
E.
,
Gollhardt
,
A.
, and
Michel
,
B.
,
2002
, “
Thermo-Mechanical Reliability of Lead-Free Solder Interconnects
,”
8th International Advanced Packaging Materials Symposium
(
APMS
), Braselton, GA, Mar. 3–6, pp. 90–96.
2.
Li
,
X.
, and
Zhisheng
,
W.
,
2007
, “
Thermo-Fatigue Life Evaluation of SnAgCu Solder Joints in Flip Chip Assemblies
,”
J. Mater. Process. Technol.
,
183
(
1
), pp.
6
12
.
3.
Dudek
,
R.
,
Walter
,
H.
,
Doering
,
R.
, and
Michel
,
B.
,
2004
, “
Thermal Fatigue Modelling for SnAgCu and SnPb Solder Joints
,”
5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Brussels, Belgium, May 10–12, pp. 557–564.
4.
Wiese
,
S.
, and
Wolter
,
K.-J.
,
2004
, “
Microstructure and Creep Behavior of Eutectic SnAg and SnAgCu Solders
,”
Microelectron. Reliab.
,
44
(
12
), pp.
1923
1931
.
5.
Metasch
,
R.
,
Schwerz
,
R.
,
Roellig
,
M.
,
Kabakchiev
,
A.
,
Metais
,
B.
,
Ratchev
,
R.
, and
Wolter
,
K.-J.
,
2015
, “
Experimental Investigation on Microstructural Influence Towards Visco-Plastic Mechanical Properties of Sn-Based Solder Alloy for Material Modelling in Finite Element Simulations
,”
16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Budapest, Hungary, Apr. 19–22, pp. 1–8.
6.
Shi
,
X. Q.
,
Wang
,
Z. P.
,
Zhou
,
W.
,
Pang
,
H. L. J.
, and
Yang
,
Q. J.
,
2002
, “
A New Creep Constitutive Model for Eutectic Solder Alloy
,”
ASME J. Electron. Packag.
,
124
(
2
) p.
85
.
7.
Mei
,
Z.
,
Morris
,
J. W.
,
Shine
,
M. C.
, and
Summers
,
T. S. E.
,
1991
, “
Effects of Cooling Rate on Mechanical Properties of Near-Eutectic Tin-Lead Solder Joints
,”
J. Electron. Mater.
,
20
(
10
), pp.
599
608
.
8.
Ranieri
,
J. P.
,
Frederick
,
S. L.
, and
Donald
,
H. A.
,
1995
, “
Plastic Constraint of Large Aspect Ratio Solder Joints
,”
J. Electron. Mater.
,
24
(
10
), pp.
1419
1423
.
9.
Frear
,
D.
,
Grivas
,
D.
, and
Morris
,
J. W.
,
1988
, “
A Microstructural Study of the Thermal Fatigue Failures of 60Sn-40Pb Solder Joints
,”
J. Electron. Mater.
,
17
(
2
), pp.
171
180
.
10.
Naumenko
,
K.
, and
Holm
,
A.
,
2007
,
Modeling of Creep for Structural Analysis
(
Foundations of Engineering Mechanics
), Springer, Berlin.
11.
Blum
,
W.
,
2001
, “
Creep of Crystalline Materials: Experimental Basis, Mechanisms and Models
,”
Mater. Sci. Eng. A
,
319–321
, pp.
8
15
.
12.
Ashby
,
M. F.
,
1972
, “
A First Report on Deformation-Mechanism Maps
,”
Acta Metall.
,
20
(
7
), pp.
887
897
.
13.
Kassner
,
M. E.
,
2008
, “
Introduction
,”
Fundamentals of Creep in Metals and Alloys
, Elsevier, Amsterdam, The Netherlands.
14.
Metais
,
B.
,
Kabakchiev
,
A.
,
Maniar
,
Y.
,
Guyenot
,
M.
,
Metasch
,
R.
,
Roellig
,
M.
,
Rettenmeier
,
P.
,
Buhl
,
P.
, and
Weihe
,
S.
,
2015
, “
A Viscoplastic-Fatigue-Creep Damage Model for Tin-Based Solder Alloy
,”
16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems
(
EuroSimE
), Budapest, Hungary, Apr. 19–22, pp. 1–5.
15.
Kerr
,
M.
, and
Chawla
,
N.
,
2004
, “
Creep Deformation Behavior of Sn–3.5Ag Solder/Cu Couple at Small Length Scales
,”
Acta Mater.
,
52
(
15
), pp.
4527
4535
.
16.
Orowan
,
E.
,
1948
, “
Internal Stresses in Metals and Alloys
,”
Nature
,
161
(
4080
), pp.
70
71
.
17.
Lagneborg
,
R.
, and
Bergman
,
B.
,
1976
, “
The Stress/Creep Rate Behavior of Precipitation-Hardened Alloys
,”
Met. Sci.
,
10
(
1
), pp.
20
28
.
18.
Blum
,
W.
,
Dvorak
,
J.
,
Kral
,
P.
,
Eisenlohr
,
P.
, and
Sklenicka
,
V.
,
2015
, “
Correct Interpretation of Creep Rates—A Case Study of Cu
,”
J. Mater. Sci. Technol.
,
31
(
11
), pp.
1065
1068
.
19.
Agamennone
,
R.
,
Blum
,
W.
,
Gupta
,
C.
, and
Chakravartty
,
J. K.
,
2006
, “
Evolution of Microstructure and Deformation Resistance in Creep of Tempered Martensitic 9–12%Cr–2%W–5%Co Steels
,”
Acta Mater.
,
54
(
11
), pp.
3003
3014
.
20.
Han
,
Y. D.
,
Jing
,
H. Y.
,
Nai
,
S. M. L.
,
Tan
,
C. M.
,
Wei
,
J.
,
Xu
,
L. Y.
, and
Zhang
,
S. R.
,
2008
, “
A New Creep Model for SnAgCu Lead-Free Composite Solders: Incorporating Back Stress
,”
10th Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 9–12, pp. 689–695.
21.
Gong
,
J.
,
Changqing
,
L.
,
Paul
,
P. C.
, and
Vadim
,
V. S.
,
2006
, “
Modelling of Ag-3Sn Coarsening and Its Effect on Creep of Sn–Ag Eutectics
,”
Mater. Sci. Eng. A
,
427
(
1–2
), pp.
60
68
.
22.
Suh
,
S. H.
,
Cohen
,
J. B.
, and
Weertman
,
J.
,
1983
, “
X-Ray Diffraction Study of Subgrain Misorientation During High Temperature Creep of Tin Single Crystals
,”
Metall. Trans. A
,
14
(
1
), pp.
117
126
.
23.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
, 1974,
Thermodynamics and Kinetics of Slip Progress in Material Science
,
Pergamon Press
,
New York
.
24.
Pharr
,
G. M.
,
1981
, “
Some Observations on the Relation Between Dislocation Substructure and Power Law Breakdown in Creep
,”
Scr. Metall.
,
15
(
7
), pp.
713
717
.
25.
Terashima
,
S.
,
Keiko
,
T.
,
Masako
,
N.
, and
Masamoto
,
T.
,
2004
, “
Recrystallization of Sn Grains Due to Thermal Strain in Sn-1.2Ag-0.5Cu-0.05Ni Solder
,”
Mater. Trans.
,
45
(
4
), pp.
1383
1390
.
26.
Chen
,
H.
,
Jing
,
H.
, and
Mingyu
,
L.
,
2011
, “
Localized Recrystallization Induced by Subgrain Rotation in Sn-3.0Ag-0.5Cu Ball Grid Array Solder Interconnects During Thermal Cycling
,”
J. Electron. Mater.
,
40
(
12
), pp.
2470
2479
.
27.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2003
, “
Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn–3.5Ag
,”
Mater. Sci. Eng. A
,
345
(
1–2
), pp.
90
98
.
You do not currently have access to this content.