Abstract

Hexagonal boron nitride (h-BN) is the most well-known wide band gap two-dimensional (2D) material (> 6 eV). To achieve its applications in optoelectronic devices, the conductance of h-BN must be implemented to the extent that it can be fabricated into a p–n junction. Here, we demonstrate a method to improve the surface current of p-type h-BN monolayer by introducing additional nitrogen gas flow during growth. First-principles calculations were conducted to show that nitrogen atmosphere can promote the formation of boron vacancy, making a low barrier site for Mg doping incorporation. Magnesium-doped h-BN monolayer was achieved using a low pressure chemical vapor deposition method under N2 flux. The surface current has been enhanced by three times up to 16 μA under 4 V external voltage. This approach provides potential applications of controllable conductive h-BN film for two-dimensional optoelectronic devices.

References

1.
Cassabois
,
G.
,
Valvin
,
P.
, and
Gil
,
B.
,
2016
, “
Hexagonal Boron Nitride is an Indirect Bandgap Semiconductor
,”
Nat. Photonics
,
10
(
4
), pp.
262
266
.10.1038/nphoton.2015.277
2.
Ouyang
,
T.
,
Chen
,
Y.
,
Xie
,
Y.
,
Yang
,
K.
,
Bao
,
Z.
, and
Zhong
,
J.
,
2010
, “
Thermal Transport in Hexagonal Boron Nitride Nanoribbons
,”
Nanotechnology
,
21
(
24
), pp.
245701
245706
.10.1088/0957-4484/21/24/245701
3.
Du
,
X. Z.
,
Uddin
,
M. R.
,
Li
,
J.
,
Lin
,
J. Y.
, and
Jiang
,
H. X.
,
2017
, “
Layer Number Dependent Optical Properties of Multilayer Hexagonal BN Epilayers
,”
Appl. Phys. Lett.
,
110
(
9
), pp.
092102
092105
.10.1063/1.4977425
4.
Zheng
,
W.
,
Lin
,
Y. C.
,
Jia
,
L. M.
, and
Huang
,
F.
,
2019
, “
Vacuum-Ultraviolet-Oriented Van Der Waals Photovoltaics
,”
ACS Photonics
,
6
(
8
), pp.
1869
1875
.10.1021/acsphotonics.9b00729
5.
Zheng
,
W.
,
Lin
,
Y. C.
,
Zhang
,
Z. J.
, and
Huang
,
F.
,
2018
, “
Vacuum-Ultraviolet Photodetection in Few-Layered h-BN
,”
ACS Appl. Mater. Interfaces
,
10
(
32
), pp.
27116
27123
.10.1021/acsami.8b07189
6.
Sun
,
H.
,
Mitra
,
S.
,
Subedi
,
R. C.
,
Zhang
,
Y.
,
Guo
,
W.
,
Ye
,
J.
,
Shakfa
,
M. K.
,
Ng
,
T. K.
,
Ooi
,
B. S.
,
Roqan
,
I. S.
,
Zhang
,
Z.
,
Dai
,
J.
,
Chen
,
C.
, and
Long
,
S.
,
2019
, “
Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate
,”
Adv. Funct. Mater.
,
29
(
48
), p.
1905445
.10.1002/adfm.201905445
7.
Sun
,
H.
,
Priante
,
D.
,
Min
,
J.-W.
,
Subedi
,
R. C.
,
Shakfa
,
M. K.
,
Ren
,
Z.
,
Li
,
K.-H.
,
Lin
,
R.
,
Zhao
,
C.
,
Ng
,
T. K.
,
Ryou
,
J.-H.
,
Zhang
,
X.
,
Ooi
,
B. S.
, and
Li
,
X.
,
2018
, “
Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation
,”
ACS Photonics
,
5
(
8
), pp.
3305
3314
.10.1021/acsphotonics.8b00538
8.
Jiang
,
H. X.
, and
Lin
,
J. Y.
,
2014
, “
Hexagonal Boron Nitride for Deep Ultraviolet Photonic Devices
,”
Semicond. Sci. Technol.
,
29
(
8
), pp.
084003
084017
.10.1088/0268-1242/29/8/084003
9.
Majety
,
S.
,
Li
,
J.
,
Cao
,
X. K.
,
Dahal
,
R.
,
Pantha
,
B. N.
,
Lin
,
J. Y.
, and
Jiang
,
H. X.
,
2012
, “
Epitaxial Growth and Demonstration of Hexagonal BN/AlGaN p-n Junctions for Deep Ultraviolet Photonics
,”
Appl. Phys. Lett.
,
100
(
6
), pp.
061121
061125
.10.1063/1.3682523
10.
Laleyan
,
D. A.
,
Zhao
,
S.
,
Woo
,
S. Y.
,
Tran
,
H. N.
,
Le
,
H. B.
,
Szkopek
,
T.
,
Hong
,
G.
,
Botton
,
G. A.
, and
Mi
,
Z.
,
2017
, “
AlN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics
,”
Nano Lett.
,
17
(
6
), pp.
3738
3743
.10.1021/acs.nanolett.7b01068
11.
Attaccalite
,
C.
,
Bockstedte
,
M.
,
Marini
,
A.
,
Rubio
,
A.
, and
Wirtz
,
L.
,
2011
, “
Coupling of Excitons and Defect States in Boron-Nitride Nanostructures
,”
Phys. Rev. B
,
83
(
14
), pp.
144115
144123
.10.1103/PhysRevB.83.144115
12.
Dahal
,
R.
,
Li
,
J.
,
Majety
,
S.
,
Pantha
,
B. N.
,
Cao
,
X. K.
,
Lin
,
J. Y.
, and
Jiang
,
H. X.
,
2011
, “
Epitaxially Grown Semiconducting Hexagonal Boron Nitride as a Deep Ultraviolet Photonic Material
,”
Appl. Phys. Lett.
,
98
(
21
), pp.
211110
211114
.10.1063/1.3593958
13.
Sun
,
F.
,
Hao
,
Z.
,
Liu
,
G.
,
Wu
,
C.
,
Lu
,
S.
,
Huang
,
S.
,
Liu
,
C.
,
Hong
,
Q.
,
Chen
,
X.
,
Cai
,
D.
, and
Kang
,
J.
,
2018
, “
Type Conductivity of Hexagonal Boron Nitride as a Dielectrically Tunable Monolayer: Modulation Doping With Magnesium
,”
Nanoscale
,
10
(
9
), pp.
4361
4369
.10.1039/C7NR08035B
14.
Lu
,
M.
,
Bousetta
,
A.
,
Bensaoula
,
A.
,
Waters
,
K.
, and
Schultz
,
J. A.
,
1996
, “
Electrical Properties of Boron Nitride Thin Films Grown by Neutralized Nitrogen Ion Assisted Vapor Deposition
,”
Appl. Phys. Lett.
,
68
(
5
), pp.
622
624
.10.1063/1.116488
15.
He
,
B.
,
Zhang
,
W. J.
,
Yao
,
Z. Q.
,
Chong
,
Y. M.
,
Yang
,
Y.
,
Ye
,
Q.
,
Pan
,
J.
,
Zapien
,
J. A.
,
Bello
,
I.
,
Lee
,
S. T.
,
Gerhards
,
H.
,
Zutz
,
H.
, and
Hofsäss
,
H.
,
2009
, “
p-Type Conduction in Beryllium-Implanted Hexagonal Boron Nitride Films
,”
Appl. Phys. Lett.
,
95
(
25
), pp.
252106
252110
.10.1063/1.3276065
16.
Gonze
,
X.
,
Beuken
,
J.-M.
,
Caracas
,
R.
,
Detraux
,
F.
,
Fuchs
,
M.
,
Rignanese
,
G.-M.
,
Sindic
,
L.
,
Verstraete
,
M.
,
Zerah
,
G.
,
Jollet
,
F.
,
Torrent
,
M.
,
Roy
,
A.
,
Mikami
,
M.
,
Ghosez
,
P.
,
Raty
,
J. Y.
, and
Allan
,
D. C.
,
2002
, “
First-Principles Computation of Material Properties: The ABINIT Software Project
,”
Comput. Mater. Sci.
,
25
(
3
), pp.
478
492
.10.1016/S0927-0256(02)00325-7
17.
Segall
,
M. D.
,
Lindan
,
P. J. D.
,
Probert
,
M. J.
,
Pickard
,
C. J.
,
Hasnip
,
P. J.
,
Clark
,
S. J.
, and
Payne
,
M. C.
,
2002
, “
First-Principles Simulation: Ideas, Illustrations and the CASTEP Code
,”
J. Phys.: Condens. Matter
,
14
(
11
), pp.
2717
2744
.10.1088/0953-8984/14/11/301
18.
Wen
,
Y.
,
Shang
,
X.
,
Dong
,
J.
,
Xu
,
K.
,
He
,
J.
, and
Jiang
,
C.
,
2015
, “
Ultraclean and Large-Area Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition
,”
Nanotechnology
,
26
(
27
), pp.
275601
275609
.10.1088/0957-4484/26/27/275601
19.
Cheng
,
T.
,
Summerfield
,
A.
,
Mellor
,
C.
,
Khlobystov
,
A.
,
Eaves
,
L.
,
Foxon
,
C.
,
Beton
,
P.
, and
Novikov
,
S.
,
2018
, “
High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride With High Active Nitrogen Fluxes
,”
Materials
,
11
(
7
), pp.
1119
1127
.10.3390/ma11071119
20.
Geick
,
R.
,
Perry
,
C. H.
, and
Rupprecht
,
G.
,
1966
, “
Normal Modes in Hexagonal Boron Nitride
,”
Phys. Rev.
,
146
(
2
), pp.
543
547
.10.1103/PhysRev.146.543
21.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
,
Nagahama
,
S.
,
Yamada
,
T.
, and
Mukai
,
T.
,
1995
, “
Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes
,”
Jpn. J. Appl. Phys.
,
34
(
Part 2, No. 10B
), pp.
L1332
L1335
.10.1143/JJAP.34.L1332
22.
Shi
,
Y.
,
Hamsen
,
C.
,
Jia
,
X.
,
Kim
,
K. K.
,
Reina
,
A.
,
Hofmann
,
M.
,
Hsu
,
A.
,
Zhang
,
K.
,
Li
,
H.
,
Juang
,
Z.
,
Dresselhaus
,
M.
,
Li
,
L. J.
, and
Kong
,
J.
,
2010
, “
Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition
,”
Nano Lett.
,
10
(
10
), pp.
4134
4139
.10.1021/nl1023707
You do not currently have access to this content.