Abstract

We fabricated the dual-wavelength InxGa1−xN/GaN nanorods for wide-spectrum light-emitting diodes (LEDs) by silica nanosphere lithography (SNL) technique. The emission properties of the dual-wavelength nanorods are characterized by micro-photoluminescence (micro-PL), cathodoluminescence (CL), and temperature-dependent PL (TDPL) measurements. Nanorod structure can effectively suppress quantum confined Stark effect (QCSE) compared with planar structure due to the strain relaxation. In addition, the internal quantum efficiency (IQE) of the green quantum well (QW) within nanorod structure increases, but the IQE of the blue QW clearly decreases because blue QW has severely suffered from the nonradiative recombination by surface damage. Furthermore, the IQEs of the green QW and the blue QW within the nanorod structure can be effectively improved by wet etching treatment, with an increase in factor by 1.3 when compared with unetched nanorod structure. Evidently, the dual-wavelength InxGa1−xN/GaN nanorods are beneficial to improve the optical performance compared with planar structure, presenting a potential to realize monolithic, high-efficiency, and cost-effective white LEDs.

References

1.
Ghataora
,
S.
,
Smith
,
R. M.
,
Athanasiou
,
M.
, and
Wang
,
T.
,
2018
, “
Electrically Injected Hybrid Organic/Inorganic III-Nitride White Light Emitting Diodes With Nonradiative Forster Resonance Energy Transfer
,”
ACS Photonics
,
5
(
2
), pp.
642
647
.10.1021/acsphotonics.7b01291
2.
Ko
,
Y. H.
,
Song
,
J.
,
Leung
,
B.
,
Han
,
J.
, and
Cho
,
Y. H.
,
2014
, “
Multi-Color Broadband Visible Light Source Via GaN Hexagonal Annular Structure
,”
Sci. Rep.
,
4
, p.
05514
.10.1038/srep05514
3.
Oh
,
S. K.
,
Lundh
,
J. S.
,
Shervin
,
S.
,
Chatterjee
,
B.
,
Lee
,
D. K.
,
Choi
,
S.
,
Kwak
,
J. S.
, and
Ryou
,
J. H.
,
2019
, “
Thermal Management and Characterization of High-Power Wide-Bandgap Semiconductor Electronic and Photonic Devices in Automotive Applications
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
020801
.10.1115/1.4041813
4.
Ziegler
,
J.
,
Xu
,
S.
,
Kucur
,
E.
,
Meister
,
F.
,
Batentschuk
,
M.
,
Gindele
,
F.
, and
Nann
,
T.
,
2008
, “
Silica-Coated InP/ZnS Nanocrystals as Converter Material in White LEDs
,”
Adv. Mater.
,
20
(
21
), pp.
4068
4037
.10.1002/adma.200800724
5.
Tao
,
T.
,
Zhi
,
T.
,
Cen
,
X.
,
Liu
,
B.
,
Wang
,
Q.
,
Xie
,
Z.
,
Chen
,
P.
,
Chen
,
D.
,
Zhou
,
Y.
,
Zheng
,
Y.
, and
Zhang
,
R.
,
2018
, “
Hybrid Cyan Nitride/Red Phosphors White Light-Emitting Diodes With Micro-Hole Structures
,”
IEEE Photonics J.
,
10
(
5
), pp.
1
8
.10.1109/JPHOT.2018.2872035
6.
Ooi
,
Y. K.
, and
Zhang
,
J.
,
2015
, “
Design Analysis of Phosphor-Free Monolithic White Light-Emitting-Diodes With InGaN/InGaN Multiple Quantum Wells on Ternary InGaN Substrates
,”
AIP Adv.
,
5
(
5
), p.
057168
.10.1063/1.4922008
7.
Ozden
,
I.
,
Makarona
,
E.
,
Nurmikko
,
A. V.
,
Takeuchi
,
T.
, and
Krames
,
M.
,
2001
, “
A Dual-Wavelength Indium Gallium Nitride Quantum Well Light Emitting Diode
,”
Appl. Phys. Lett.
,
79
(
16
), pp.
2532
2534
.10.1063/1.1410345
8.
Lee
,
Y. J.
,
Lin
,
P. C.
,
Lu
,
T. C.
,
Kuo
,
H. C.
, and
Wang
,
S. C.
,
2007
, “
Dichromatic InGaN-Based White Light Emitting Diodes by Using Laser Lift-Off and Wafer-Bonding Schemes
,”
Appl. Phys. Lett.
,
90
(
16
), p.
161115
.10.1063/1.2722672
9.
Si
,
Z.
,
Wei
,
T.
,
Yan
,
J.
,
Ma
,
J.
,
Zhang
,
N.
,
Liu
,
Z.
,
Wei
,
X.
,
Wang
,
X.
,
Lu
,
H.
,
Wang
,
J.
, and
Li
,
J.
,
2013
, “
Improved Hole Distribution in InGaN/GaN Dual-Wavelength Light-Emitting Diodes With Mg-Doped Quantum-Wells
,”
Phys. Status Solidi A
,
210
(
3
), pp.
559
562
.10.1002/pssa.201228777
10.
Kou
,
J.
,
Chen
,
S. W. H.
,
Che
,
J.
,
Shao
,
H.
,
Chu
,
C.
,
Tian
,
K.
,
Zhang
,
Y.
,
Bi
,
W.
,
Zhang
,
Z.
, and
Kuo
,
H. C.
,
2019
, “
On the Carrier Transport for InGaN/GaN Core-Shell Nanorod Green Light-Emitting Diodes
,”
IEEE Trans. Nanotechnol.
,
18
, pp.
176
182
.10.1109/TNANO.2018.2879817
11.
Ren
,
Z.
,
Yu
,
H.
,
Liu
,
Z.
,
Wang
,
D.
,
Xing
,
C.
,
Zhang
,
H.
,
Huang
,
C.
,
Long
,
S.
, and
Sun
,
H.
,
2020
, “
Band Engineering of III-Nitride-Based Deep-Ultraviolet Light-Emitting Diodes: A Review
,”
J. Phys. D
,
53
(
7
), p.
073002
.10.1088/1361-6463/ab4d7b
12.
Bae
,
S. Y.
,
Kong
,
D. J.
,
Lee
,
J. Y.
,
Seo
,
D. J.
, and
Lee
,
D. S.
,
2013
, “
Size-Controlled InGaN/GaN Nanorod Array Fabrication and Optical Characterization
,”
Opt. Exp.
,
21
(
14
), pp.
16854
16862
.10.1364/OE.21.016854
13.
Zhao
,
J.
,
Wei
,
T.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Wei
,
X.
,
Yan
,
J.
,
Wang
,
J.
, and
Li
,
J.
,
2019
, “
Phosphor-Free Three-Dimensional Hybrid White LED with High Color-Rendering Index
,”
IEEE Photonics J.
,
11
(
3
), pp.
1
8
.10.1109/JPHOT.2019.2913869
14.
Wei
,
T.
,
Islam
,
S. M.
,
Jahn
,
U.
,
Yan
,
J.
,
Lee
,
K.
,
Bharadwaj
,
S.
,
Ji
,
X.
,
Wang
,
J.
,
Li
,
J.
,
Protasenko
,
V.
,
Xing
,
H. G.
, and
Jena
,
D.
,
2020
, “
GaN/AlN Quantum-Disk Nanorod 280 nm Deep Ultraviolet Light Emitting Diodes by Molecular Beam Epitaxy
,”
Opt. Lett.
,
45
(
1
), pp.
121
124
.10.1364/OL.45.000121
15.
Long
,
D. H.
,
Hwang
,
I. K.
, and
Ryu
,
S. W.
,
2009
, “
Design Optimization of Photonic Crystal Structure for Improved Light Extraction of GaN LED
,”
IEEE J. Quantum Electron.
,
15
(
4
), pp.
1257
1263
.10.1109/JSTQE.2009.2014471
16.
Si
,
Z.
,
Wei
,
T.
,
Zhang
,
N.
,
Ma
,
J.
,
Wang
,
J.
, and
Li
,
J.
,
2013
, “
Improvement of Carrier Distribution in Dual Wavelength Light-Emitting Diodes
,”
J. Semicond.
,
34
(
5
), p.
054008
.10.1088/1674-4926/34/5/054008
17.
Park
,
I. K.
,
Kim
,
J. Y.
,
Kwon
,
M. K.
,
Cho
,
C. Y.
,
Lim
,
J. H.
, and
Park
,
S. J.
,
2008
, “
Phosphor-Free White Light-Emitting Diode With Laterally Distributed Multiple Quantum Wells
,”
Appl. Phys. Lett.
,
92
(
9
), p.
091110
.10.1063/1.2890492
18.
Qi
,
Y. D.
,
Liang
,
H.
,
Wang
,
D.
,
Lu
,
Z. D.
,
Tang
,
W.
, and
Lau
,
K. M.
,
2005
, “
Comparison of Blue and Green InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes Grown by Metal Organic Vapor Phase Epitaxy
,”
Appl. Phys. Lett.
,
86
(
10
), p.
101903
.10.1063/1.1866634
19.
Puech
,
P.
,
Demangeot
,
F.
,
Frandon
,
J.
,
Pinquier
,
C.
,
Kuball
,
M.
,
Domnich
,
V.
, and
Gogotsi
,
Y.
,
2004
, “
GaN Nanoindentation: A Micro-Raman Spectroscopy Study of Local Strain Fields
,”
J. Appl. Phys.
,
96
(
5
), pp.
2853
2856
.10.1063/1.1775295
20.
Rieger
,
W.
,
Metzger
,
T.
,
Angerer
,
H.
,
Dimitrov
,
R.
,
Ambacher
,
O.
, and
Stutzmann
,
M.
,
1996
, “
Influence of Substrate-Induced Biaxial Compressive Stress on the Optical Properties of Thin GaN Films
,”
Appl. Phys. Lett.
,
68
(
7
), pp.
970
972
.10.1063/1.116115
21.
Latzel
,
M.
,
Büttner
,
P.
,
Sarau
,
G.
,
Höflich
,
K.
,
Heilmann
,
M.
,
Chen
,
W.
,
Wen
,
X.
,
Conibeer
,
G.
, and
Christiansen
,
S. H.
,
2017
, “
Significant Performance Enhancement of InGaN/GaN Nanorod LEDs With Multi-Layer Graphene Transparent Electrodes by Alumina Surface Passivation
,”
Nanotechnology
,
28
(
5
), p.
055201
.10.1088/1361-6528/28/5/055201
22.
Dong
,
P.
,
Yan
,
J.
,
Zhang
,
Y.
,
Wang
,
J.
,
Geng
,
C.
,
Chen
,
W.
,
Zheng
,
H.
,
Wei
,
X.
,
Yan
,
Q.
, and
Li
,
J.
,
2014
, “
Optical Properties of Nanopillar AlGaN/GaN MQWs for Ultraviolet Light-Emitting Diodes
,”
Opt. Exp.
,
22
(
S2
), pp.
A320
A327
.10.1364/OE.22.00A320
23.
Ponce
,
F. A.
,
Bour
,
D. P.
,
Götz
,
W.
, and
Wright
,
P. J.
,
1996
, “
Spatial Distribution of the Luminescence in GaN Thin Films
,”
Appl. Phys. Lett.
,
68
(
1
), pp.
57
59
.10.1063/1.116756
24.
Li
,
Z.
,
Kang
,
J.
,
Wang
,
B.
,
Li
,
H.
,
Weng
,
Y. H.
,
Lee
,
Y. C.
,
Liu
,
Z.
,
Yi
,
X.
,
Feng
,
Z.
, and
Wang
,
G.
,
2014
, “
Two Distinct Carrier Localization in Green Light-Emitting Diodes With InGaN/GaN Multiple Quantum Wells
,”
J. Appl. Phys.
,
115
(
8
), p.
083112
.10.1063/1.4866815
25.
Ho
,
I.
, and
Stringfellow
,
G. B.
,
1996
, “
Solid Phase Immiscibility in GaInN
,”
Appl. Phys. Lett.
,
69
(
18
), pp.
2701
2703
.10.1063/1.117683
26.
Narukawa
,
Y.
,
Kawakami
,
Y.
,
Funato
,
M.
,
Fujita
,
S.
,
Fujita
,
S.
, and
Nakamura
,
S.
,
1997
, “
Role of Self-Formed InGaN Quantum Dots for Exciton Localization in the Purple Laser Diode Emitting at 420 nm
,”
Appl. Phys. Lett.
,
70
(
8
), pp.
981
983
.10.1063/1.118455
27.
Sun
,
H.
,
Mitra
,
S.
,
Subedi
,
R. C.
,
Zhang
,
Y.
,
Guo
,
W.
,
Ye
,
J.
,
Shakfa
,
M. K.
,
Ng
,
T. K.
,
Ooi
,
B. S.
,
Roqan
,
I. S.
,
Zhang
,
Z.
,
Dai
,
J.
,
Chen
,
C.
, and
Long
,
S.
,
2019
, “
Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate
,”
Adv. Funct. Mater.
,
29
(
48
), p.
1905445
.10.1002/adfm.201905445
28.
Liu
,
W.
,
Zhao
,
D. G.
,
Jiang
,
D. S.
,
Chen
,
P.
,
Liu
,
Z. S.
,
Zhu
,
J. J.
,
Shi
,
M.
,
Zhao
,
D. M.
,
Li
,
X.
,
Liu
,
J. P.
,
Zhang
,
S. M.
,
Wang
,
H.
,
Yang
,
H.
,
Zhang
,
Y. T.
, and
Du
,
G. T.
,
2015
, “
Temperature Dependence of Photoluminescence Spectra for Green Light Emission From InGaN/GaN Multiple Wells
,”
Opt. Exp.
,
23
(
12
), pp.
15935
15943
.10.1364/OE.23.015935
29.
Wang
,
H.
,
Lee
,
K. S.
,
Ryu
,
J. H.
,
Hong
,
C. H.
, and
Cho
,
Y. H.
,
2008
, “
White Light Emitting Diodes Realized by Using an Active Packaging Method With CdSe/ZnS Quantum Dots Dispersed in Photosensitive Epoxy Resins
,”
Nanotechnology
,
19
(
14
), p.
145202
.10.1088/0957-4484/19/14/145202
30.
Abell
,
J.
, and
Moustakas
,
T. D.
,
2008
, “
The Role of Dislocations as Nonradiative Recombination Centers in InGaN Quantum Wells
,”
Appl. Phys. Lett.
,
92
(
9
), p.
091901
.10.1063/1.2889444
31.
Sun
,
H.
,
Priante
,
D.
,
Min
,
J. W.
,
Ram
,
C. S.
,
Shakfa
,
M. K.
,
Ren
,
Z.
,
Li
,
K. H.
,
Lin
,
R.
,
Zhao
,
C.
,
Ng
,
T. K.
,
Ryou
,
J. H.
,
Zhang
,
X.
,
Ooi
,
B. C.
, and
Li
,
X.
,
2018
, “
Graded-Index Separated Confinement Heterostructure AlGaN Nanowires: Towards Ultraviolet Laser Diodes Implementation
,”
ACS Photonics
,
5
(
8
), pp.
3305
3314
.10.1021/acsphotonics.8b00538
32.
Zhou
,
S.
,
Liu
,
X.
,
Yan
,
H.
,
Gao
,
Y.
,
Xu
,
H.
,
Zhao
,
J.
,
Quan
,
Z.
,
Gui
,
C.
, and
Liu
,
S.
,
2018
, “
The Effect of Nanometre-Scale V-Pits on Electronic and Optical Properties and Efficiency Droop of GaN-Based Green Light-Emitting Diodes
,”
Sci. Rep.
,
8
, p.
11053
.10.1038/s41598-018-29440-4
33.
Lv
,
J.
,
Zheng
,
C.
,
Zhou
,
S.
,
Fang
,
F.
, and
Yuan
,
S.
,
2016
, “
Highly Efficient and Reliable High Power InGaN/GaN LEDs With 3D Patterned Step-Like ITO and Wavy Sidewalls
,”
Phys. Status Solidi A
,
213
(
5
), pp.
1181
1186
.10.1002/pssa.201532763
You do not currently have access to this content.