Abstract

Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.

References

1.
Mishra
,
U. K.
,
Shen
,
L.
,
Kazior
,
T. E.
, and
Wu
,
Y.
,
2008
, “
GaN-Based RF Power Devices and Amplifiers
,”
Proc. IEEE
,
96
(
2
), pp.
287
305
.10.1109/JPROC.2007.911060
2.
Komiak
,
J. J.
,
2015
, “
GaN HEMT: Dominant Force in High-Frequency Solid-State Power Amplifiers
,”
IEEE Microw. Mag.
,
16
(
3
), pp.
97
105
.10.1109/MMM.2014.2385303
3.
Trew
,
R. J.
,
Shin
,
M. W.
, and
Gatto
,
V.
,
1997
, “
High Power Applications for GaN-Based Devices
,”
Solid State Electron.
,
41
(
10
), pp.
1561
1567
.10.1016/S0038-1101(97)00105-6
4.
Chen
,
K. J.
,
Haberlen
,
O.
,
Lidow
,
A.
,
Tsai
,
C. L.
,
Ueda
,
T.
,
Uemoto
,
Y.
, and
Wu
,
Y.
,
2017
, “
GaN-on-Si Power Technology: Devices and Applications
,”
IEEE Trans. Electron Devices
,
64
(
3
), pp.
779
795
.10.1109/TED.2017.2657579
5.
Palacios
,
T.
,
Chakraborty
,
A.
,
Rajan
,
S.
,
Poblenz
,
C.
,
Keller
,
S.
,
DenBaars
,
S. P.
,
Speck
,
J. S.
, and
Mishra
,
U. K.
,
2005
, “
High-Power AlGaN/GaN HEMTs for Ka-Band Applications
,”
IEEE Electron Device Lett.
,
26
(
11
), pp.
781
783
.10.1109/LED.2005.857701
6.
Millan
,
J.
,
Godignon
,
P.
,
Perpina
,
X.
,
Perez-Tomas
,
A.
, and
Rebollo
,
J.
,
2014
, “
A Survey of Wide Bandgap Power Semiconductor Devices
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2155
2163
.10.1109/TPEL.2013.2268900
7.
Pengelly
,
R. S.
,
Wood
,
S. M.
,
Milligan
,
J. W.
,
Sheppard
,
S. T.
, and
Pribble
,
W. L.
,
2012
, “
A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
6
), pp.
1764
1783
.10.1109/TMTT.2012.2187535
8.
Ozpineci
,
B.
, and
Tolbert
,
L. M.
,
2003
, “
Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2003/257.
9.
Shur
,
M.
, and
Davis
,
R. F.
,
2004
,
GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance
,
World Scientific
, Singapore.
10.
Levinshtein
,
M. E.
,
Rumyantsev
,
S. L.
, and
Shur
,
M. S.
,
2001
,
Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe
,
Wiley
, New York.
11.
Flack
,
T. J.
,
Pushpakaran
,
B. N.
, and
Bayne
,
S. B.
,
2016
, “
GaN Technology for Power Electronic Applications: A Review
,”
J. Electron. Mater.
,
45
(
6
), pp.
2673
2682
.10.1007/s11664-016-4435-3
12.
Ambacher
,
O.
,
Smart
,
J.
,
Shealy
,
J. R.
,
Weimann
,
N. G.
,
Chu
,
K.
,
Murphy
,
M.
,
Schaff
,
W. J.
,
Eastman
,
L. F.
,
Dimitrov
,
R.
,
Wittmer
,
L.
,
Stutzmann
,
M.
,
Rieger
,
W.
, and
Hilsenbeck
,
J.
,
1999
, “
Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures
,”
J. Appl. Phys.
,
85
(
6
), pp.
3222
3233
.10.1063/1.369664
13.
Cimalla
,
V.
,
Pezoldt
,
J.
, and
Ambacher
,
O.
,
2007
, “
Group III Nitride and SiC Based MEMS and NEMS: Materials Properties, Technology and Applications
,”
J. Phys. D. Appl. Phys.
,
40
(
20
), pp.
6386
6434
.10.1088/0022-3727/40/20/S19
14.
Mitova
,
R.
,
Ghosh
,
R.
,
Mhaskar
,
U.
,
Klikic
,
D.
,
Wang
,
M. X.
, and
Dentella
,
A.
,
2014
, “
Investigations of 600-V Gan HEMT and GaN Diode for Power Converter Applications
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2441
2452
.10.1109/TPEL.2013.2286639
15.
Wu
,
Y.
,
Jacob-Mitos
,
M.
,
Moore
,
M. L.
, and
Heikman
,
S.
,
2008
, “
A 97.8% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1 MHz
,”
IEEE Electron Device Lett.
,
29
(
8
), pp.
824
826
.10.1109/LED.2008.2000921
16.
Zhang
,
N.
,
Mehrotra
,
V.
,
Chandrasekaran
,
S.
,
Moran
,
B.
,
Shen
,
L.
,
Mishra
,
U.
,
Etzkorn
,
E.
, and
Clarke
,
D.
,
2004
, “
Large Area GaN HEMT Power Devices for Power Electronic Applications: Switching and Temperature Characteristics
,”
PESC Record—IEEE Annual Power Electronics Specialists Conference
, Acapulco, Mexico, June 15–19, pp.
233
237
.10.1109/PESC.2003.1218300
17.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Bias Conditions on Self-Heating in AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices
,
60
(
1
), pp.
159
162
.10.1109/TED.2012.2224115
18.
Wang
,
X. D.
,
Hu
,
W. D.
,
Chen
,
X. S.
, and
Lu
,
W.
,
2012
, “
The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs
,”
IEEE Trans. Electron Devices
,
59
(
5
), pp.
1393
1401
.10.1109/TED.2012.2188634
19.
Heller
,
E.
,
Choi
,
S.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Electrical and Structural Dependence of Operating Temperature of AlGaN/GaN HEMTs
,”
Microelectron. Reliab.
,
53
(
6
), pp.
872
877
.10.1016/j.microrel.2013.03.004
20.
Si
,
J.
,
Wei
,
J.
,
Chen
,
W.
, and
Zhang
,
B.
,
2013
, “
Electric Field Distribution Around Drain-Side Gate Edge in AlGaN/GaN HEMTs: Analytical Approach
,”
IEEE Trans. Electron Devices
,
60
(
10
), pp.
3223
3229
.10.1109/TED.2013.2272055
21.
Sridharan
,
S.
,
Venkatachalam
,
A.
, and
Yoder
,
P. D.
,
2008
, “
Electrothermal Analysis of AlGaN/GaN High Electron Mobility Transistors
,”
J. Comput. Electron.
,
7
, pp.
236
239
.10.1007/s10825-008-0210-x
22.
Lisesivdin
,
S. B.
,
Acar
,
S.
,
Kasap
,
M.
,
Ozcelik
,
S.
,
Gokden
,
S.
, and
Ozbay
,
E.
,
2007
, “
Scattering Analysis of 2DEG Carrier Extracted by QMSA in Undoped Al 0.25Ga0.75N/GaN Heterostructures
,”
Semicond. Sci. Technol.
,
22
(
5
), pp.
543
548
.10.1088/0268-1242/22/5/015
23.
Qu
,
S.
,
Li
,
S.
,
Peng
,
Y.
,
Zhu
,
X.
,
Hu
,
X.
,
Wang
,
C.
,
Chen
,
X.
,
Gao
,
Y.
, and
Xu
,
X.
,
2010
, “
Influence of the Growth Temperature of AlN Buffer on the Quality and Stress of GaN Films Grown on 6H-SiC Substrate by MOVPE
,”
J. Alloys Compd.
,
502
(
2
), pp.
417
422
.10.1016/j.jallcom.2010.04.185
24.
Ishida
,
M.
,
Ueda
,
T.
,
Tanaka
,
T.
, and
Ueda
,
D.
,
2013
, “
GaN on Si Technologies for Power Dwitching Fevices
,”
IEEE Trans. Electron Devices
,
60
(
10
), pp.
3053
3059
.10.1109/TED.2013.2268577
25.
Choi
,
S.
,
Heller
,
E.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
The Impact of Mechanical Stress on the Degradation of AlGaN/GaN High Electron Mobility Transistors
,”
J. Appl. Phys.
,
114
(
16
), p.
164501
.10.1063/1.4826524
26.
del Alamo
,
J. A.
, and
Joh
,
J.
,
2009
, “
GaN HEMT Reliability
,”
Microelectron. Reliab.
,
49
(
9–11
), pp.
1200
1206
.10.1016/j.microrel.2009.07.003
27.
Heller
,
E. R.
,
2008
, “
Simulation of Life Testing Procedures for Estimating Long-Term Degradation and Lifetime of AlGaN/GaN HEMTs
,”
IEEE Trans. Electron Devices,
55
(
10
), pp.
2554
2560
.10.1109/TED.2008.2003220
28.
Pomeroy
,
J. W.
,
Uren
,
M. J.
,
Lambert
,
B.
, and
Kuball
,
M.
,
2015
, “
Operating Channel Temperature in GaN HEMTs: DC Versus RF Accelerated Life Testing
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2505
2510
.10.1016/j.microrel.2015.09.025
29.
Choi
,
S.
,
Peake
,
G. M.
,
Keeler
,
G. A.
,
Geib
,
K. M.
,
Briggs
,
R. D.
,
Beechem
,
T. E.
,
Shaffer
,
R. A.
,
Clevenger
,
J.
,
Patrizi
,
G. A.
,
Klem
,
J. F.
,
Tauke-Pedretti
,
A.
, and
Nordquist
,
C. D.
,
2016
, “
Thermal Design and Characterization of Heterogeneously Integrated InGaP/GaAs HBTs
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
6
(
5
), pp.
740
748
.10.1109/TCPMT.2016.2541615
30.
Yan
,
Z.
,
Liu
,
G.
,
Khan
,
J. M.
, and
Balandin
,
A. A.
,
2012
, “
Graphene Quilts for Thermal Management of High-Power GaN Transistors
,”
Nat. Commun.
,
3
, pp.
827
828
.10.1038/ncomms1828
31.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
Cooling Limits for GaN HEMT Technology
,” Technical Digest—IEEE Compound Semiconductor Integrated Circuit Symposium (
CSIC
), Monterey, CA, Oct. 13–16, pp.
1
5
.10.1109/CSICS.2013.6659222
32.
Choi
,
S.
,
Heller
,
E. R.
,
Dorsey
,
D.
,
Vetury
,
R.
, and
Graham
,
S.
,
2013
, “
Thermometry of AlGaN/GaN HEMTs Using Multispectral Raman Features
,”
IEEE Trans. Electron Devices
,
60
(
6
), pp.
1898
1904
.10.1109/TED.2013.2255102
33.
Kuball
,
M.
,
Hayes
,
J. M.
,
Uren
,
M. J.
,
Martin
,
T.
,
Birbeck
,
J. C. H.
,
Balmer
,
R. S.
, and
Hughes
,
B. T.
,
2002
, “
Measurement of Temperature in Active High-Power AlGaN/GaN HFETs Using Raman Spectroscopy
,”
IEEE Electron Device Lett.
,
23
(
1
), pp.
7
9
.10.1109/55.974795
34.
Maize
,
K.
,
Pavlidis
,
G.
,
Heller
,
E.
,
Yates
,
L.
,
Kendig
,
D.
,
Graham
,
S.
, and
Shakouri
,
A.
,
2014
, “
High Resolution Thermal Characterization and Simulation of Power AlGaN/GaN HEMTs Using Micro-Raman Thermography and 800 Picosecond Transient Thermoreflectance Imaging
,” Technical Digest—IEEE Compound Semiconductor Integrated Circuit Symposium (
CSIC
), La Jolla, CA, Oct. 19–22, pp.
1
8
.10.1109/CSICS.2014.6978561
35.
Pavlidis
,
G.
,
Kendig
,
D.
,
Heller
,
E. R.
, and
Graham
,
S.
,
2018
, “
Transient Thermal Characterization of AlGaN/GaN HEMTs Under Pulsed Biasing
,”
IEEE Trans. Electron Devices
,
65
(
5
), pp.
1753
1758
.10.1109/TED.2018.2818621
36.
Mitani
,
E.
,
Aojima
,
M.
, and
Sano
,
S.
,
2007
, “
A KW-Class AlGaN/GaN HEMT Pallet Amplifier for S-Band High Power Application
,” European Microwave Week 2007 Conference Proceedings, EuMW 2007—Second European Microwave Integrated Circuits Conference (
EuMIC
), Munich, Germany, Oct. 8–10, pp.
176
179
.10.1109/EMICC.2007.4412677
37.
Sarua
,
A.
,
Kuball
,
M.
,
Uren
,
M. J.
,
Martin
,
T.
,
Hilton
,
K. P.
, and
Balmer
,
R. S.
,
2006
, “
Integrated Micro-Raman/Infrared Thermography Probe for Monitoring of Self-Heating in AlGaN/GaN Transistor Structures
,”
IEEE Trans. Electron Devices
,
53
(
10
), pp.
2438
2447
.10.1109/TED.2006.882274
38.
Yazawa
,
K.
,
Kendig
,
D.
, and
Shakouri
,
A.
,
2015
, “
Thermal Imaging Characterization for High Frequency and High Power Devices
,”
International Conference on Electronic Packaging and iMAPS All Asia Conference of ICEP-IAAC 2015—2015
, Kyoto, Japan, Apr. 14–17, pp.
395
400
.10.1109/ICEP-IAAC.2015.7111043
39.
Killat
,
N.
,
Kuball
,
M.
,
Chou
,
T. M.
,
Chowdhury
,
U.
, and
Jimenez
,
J.
,
2010
, “
Temperature Assessment of AlGaN/GaN HEMTs: A Comparative Study by Raman, Electrical and IR Thermography
,”
Proceedings of IEEE International Reliability Physics Symposium
, Anaheim, CA, May 2–6, pp.
528
531
.10.1109/IRPS.2010.5488777
40.
Huang
,
X.
,
Li
,
Q.
,
Liu
,
Z.
, and
Lee
,
F. C.
,
2014
, “
Analytical Loss Model of High Voltage GaN HEMT in Cascode Configuration
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2208
2219
.10.1109/TPEL.2013.2267804
41.
Nakajima
,
A.
,
Takao
,
K.
, and
Ohashi
,
H.
,
2013
, “
GaN Power Transistor Modeling for High-Speed Converter Circuit Design
,”
IEEE Trans. Electron Devices
,
60
(
2
), pp.
646
652
.10.1109/TED.2012.2226180
42.
Beechem
,
T.
,
Christensen
,
A.
,
Graham
,
S.
, and
Green
,
D.
,
2008
, “
Micro-Raman Thermometry in the Presence of Complex Stresses in GaN Devices
,”
J. Appl. Phys.
,
103
(
12
), p.
124501
.10.1063/1.2940131
43.
Riedel
,
G. J.
,
Pomeroy
,
J. W.
,
Hilton
,
K. P.
,
Maclean
,
J. O.
,
Wallis
,
D. J.
,
Uren
,
M. J.
,
Martin
,
T.
, and
Kuball
,
M.
,
2008
, “
Nanosecond Timescale Thermal Dynamics of AlGaN/GaN Electronic Devices
,”
IEEE Electron Device Lett.
,
29
(
5
), pp.
416
418
.10.1109/LED.2008.919779
44.
Kuball
,
M.
,
Riedel
,
G. J.
,
Pomeroy
,
J. W.
,
Sarua
,
A.
,
Uren
,
M. J.
,
Martin
,
T.
,
Hilton
,
K. P.
,
Maclean
,
J. O.
, and
Wallis
,
D. J.
,
2007
, “
Time-Resolved Temperature Measurement of AlGaN/GaN Electronic Devices Using Micro-Raman Spectroscopy
,”
IEEE Electron Device Lett.,
28
(
2
), pp.
86
89
.10.1109/LED.2006.889215
45.
Maize
,
K.
,
Heller
,
E.
,
Dorsey
,
D.
, and
Shakouri
,
A.
,
2012
, “
Thermoreflectance CCD Imaging of Self Heating in AlGaN/GaN High Electron Mobility Power Transistors at High Drain Voltage
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 18–22, pp.
173
181
.10.1109/STHERM.2012.6188846
46.
Kendig
,
D.
,
Tay
,
A.
, and
Shakouri
,
A.
,
2016
, “
Thermal Analysis of Advanced Microelectronic Devices Using Thermoreflectance Thermography
,” 22nd International Workshop on Thermal Investigations of ICs and Systems (
THERMINIC
), Budapest, Hungary, Sept. 21–23, pp.
21
23
.10.1109/THERMINIC.2016.7749037
47.
Lundh
,
J. S.
,
Chatterjee
,
B.
,
Dallas
,
J.
,
Kim
,
H.
, and
Choi
,
S.
,
2017
, “
Integrated Temperature Mapping of Lateral Gallium Nitride Electronics
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
320
327
.10.1109/ITHERM.2017.7992488
48.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1998
, “
Short-Time-Scale Thermal Mapping of Microdevices Using a Scanning Thermoreflectance Technique
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
306
313
.10.1115/1.2824246
49.
Kendig
,
D.
,
Tay
,
A. A. O.
, and
Shakouri
,
A.
,
2016
, “
Thermal Imaging Based on Thermoreflectance Addresses the Challenges for Thermal Analysis of Today's Advanced Complex Devices
,” 17th International Conference on Electronic Packaging Technology (
ICEPT
), Wuhan, China, Aug. 16–19, pp.
1517
1521
.10.1109/ICEPT.2016.7583411
50.
Long
,
D. A.
,
1977
,
Raman Spectroscopy
,
McGraw-Hill
,
New York
, pp.
1
12
.
51.
Everall
,
N. J.
,
2009
, “
Confocal Raman Microscopy: Performance, Pitfalls, and Best Practice
,”
Appl. Spectrosc.
,
63
(
9
), pp.
245A
262A
.10.1366/000370209789379196
52.
Dallas
,
J.
,
Pavlidis
,
G.
,
Chatterjee
,
B.
,
Lundh
,
J. S.
,
Ji
,
M.
,
Kim
,
J.
,
Kao
,
T.
,
Detchprohm
,
T.
,
Dupuis
,
R. D.
,
Shen
,
S.
,
Graham
,
S.
, and
Choi
,
S.
,
2018
, “
Thermal Characterization of Gallium Nitride p-i-n Diodes
,”
Appl. Phys. Lett.
,
112
(
7
), p.
073503
.10.1063/1.5006796
53.
Heller
,
E. R.
, and
Crespo
,
A.
,
2008
, “
Electro-Thermal Modeling of Multifinger AlGaN/GaN HEMT Device Operation Including Thermal Substrate Effects
,”
Microelectron. Reliab.
,
48
(
1
), pp.
45
50
.10.1016/j.microrel.2007.01.090
54.
Omura
,
I.
,
Saito
,
W.
,
Domon
,
T.
, and
Tsuda
,
K.
,
2007
, “
Gallium Nitride Power HEMT for High Switching Frequency Power Electronics
,”
International Workshop on Physics of Semiconductor Devices
, Mumbai, India, Dec. 16–20, pp.
781
786
. 10.1109/IWPSD.2007.4472634
55.
Pavlidis
,
G.
,
Kendig
,
D.
,
Yates
,
L.
, and
Graham
,
S.
,
2018
, “
Improving the Transient Thermal Characterization of GaN HEMTs
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
208
213
.10.1109/ITHERM.2018.8419649
56.
Baca
,
A. G.
,
Armstrong
,
A. M.
,
Allerman
,
A. A.
,
Douglas
,
E. A.
,
Sanchez
,
C. A.
,
Michael
,
P.
,
Coltrin
,
M. E.
,
Fortune
,
T. R.
,
Kaplar
,
R. J.
,
Aln
,
A.
,
Ga
,
A.
,
Baca
,
A. G.
,
Armstrong
,
A. M.
,
Allerman
,
A. A.
,
Douglas
,
E. A.
,
Sanchez
,
C. A.
,
King
,
M. P.
,
Coltrin
,
M. E.
,
Fortune
,
T. R.
, and
Kaplar
,
R. J.
,
2016
, “
An AlN/Al0.85Ga0.15N High Electron Mobility Transistor
,”
Appl. Phys. Lett.,
109
(
3
), p.
033509
. 10.1063/1.4959179
57.
Baca
,
A. G.
,
Klein
,
B. A.
,
Allerman
,
A. A.
,
Armstrong
,
A. M.
,
Douglas
,
E. A.
,
Stephenson
,
C. A.
,
Fortune
,
T. R.
, and
Kaplar
,
R. J.
,
2017
, “
Al 0.85 Ga 0.15 N/Al 0.70 Ga 0.30 N High Electron Mobility Transistors With Schottky Gates and Large On/Off Current Ratio Over Temperature
,”
ECS J. Solid State Sci. Technol.
,
6
(
12
), pp.
Q161
Q165
.10.1149/2.0231712jss
58.
Baca
,
A. G.
,
Armstrong
,
A. M.
,
Allerman
,
A. A.
,
Klein
,
B. A.
,
Douglas
,
E. A.
,
Sanchez
,
C. A.
, and
Fortune
,
T. R.
,
2017
, “
High Temperature Operation of Al 0.45 Ga 0.55 N/Al 0.30 Ga 0.70 N High Electron Mobility Transistors
,”
ECS J. Solid State Sci. Technol.
,
6
(
11
), pp.
S3010
S3013
.10.1149/2.0041711jss
59.
Chabak
,
K. D.
,
Walker
,
D. E.
,
Green
,
A. J.
,
Crespo
,
A.
,
Lindquist
,
M.
,
Leedy
,
K.
,
Tetlak
,
S.
,
Gilbert
,
R.
,
Moser
,
N. A.
, and
Jessen
,
G.
,
2018
, “
Sub-Micron Gallium Oxide Radio Frequency Field-Effect Transistors
,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (
IMWS-AMP
), Ann Arbor, MI, July 16–18, pp.
1
3
.10.1109/IMWS-AMP.2018.8457153
60.
Green
,
A. J.
,
Chabak
,
K. D.
,
Baldini
,
M.
,
Moser
,
N.
,
Gilbert
,
R.
,
Fitch
,
R. C.
,
Wagner
,
G.
,
Galazka
,
Z.
,
McCandless
,
J.
,
Crespo
,
A.
,
Leedy
,
K.
, and
Jessen
,
G. H.
,
2017
, “
β-Ga2O3 MOSFETs for Radio Frequency Operation
,”
IEEE Electron Device Lett.
,
38
(
6
), pp.
790
793
.10.1109/LED.2017.2694805
61.
Wong
,
M. H.
,
Sasaki
,
K.
,
Kuramata
,
A.
,
Yamakoshi
,
S.
, and
Higashiwaki
,
M.
,
2016
, “
Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750V
,”
IEEE Electron Device Lett.
,
37
(
2
), pp.
212
215
.10.1109/LED.2015.2512279
62.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B Condens. Matter Mater. Phys.
,
76
(
7
), pp.
1
5
.10.1103/PhysRevB.76.075207
63.
Liu
,
W.
, and
Balandin
,
A. A.
,
2005
, “
Thermal Conduction in AlxGa1-XN Alloys and Thin Films
,”
J. Appl. Phys.
,
97
(
7
), p.
073710
.10.1063/1.1868876
You do not currently have access to this content.