Abstract

An aluminum-rich AlGaN layer is commonly implemented to act as an electron-blocking layer (EBL) to block electron overflow from the active region in the conventional deep-ultraviolet light-emitting diodes (DUV LEDs). Herein, we propose a DUV LED device architecture with specially designed band-engineered quantum barriers (QBs) to “serve” as an alternative approach to alleviate such overflow effect, suppressing the electron leakage, and facilitating the electron and hole injection into the active region for efficient radiative recombination. Intriguingly, a much smaller efficiency droop with a significant enhancement of light output power (LOP) by nearly 50% can be achieved at the injection current level of 120 mA in such EBL-free device, in comparison with the conventional EBL-incorporated DUV LED structure. Thus, the EBL-free device architecture provides us an alternative path toward the realization of efficient DUV light emitters.

References

1.
Kneissl
,
M.
,
Seong
,
T.-Y.
,
Han
,
J.
, and
Amano
,
H.
,
2019
, “
The Emergence and Prospects of Deep-Ultraviolet Light-Emitting Diode Technologies
,”
Nat. Photonics
,
13
(
4
), pp.
233
244
.10.1038/s41566-019-0359-9
2.
Ren
,
Z.
,
Yu
,
H.
,
Liu
,
Z.
,
Wang
,
D.
,
Xing
,
C.
,
Zhang
,
H.
,
Huang
,
C.
,
Long
,
S.
, and
Sun
,
H.
,
2020
, “
Band Engineering of III-Nitride-Based Deep-Ultraviolet Light-Emitting Diodes: A Review
,”
J. Phys. D: Appl. Phys.
,
53
(
7
), p.
073002
.10.1088/1361-6463/ab4d7b
3.
Sun
,
H.
,
Priante
,
D.
,
Min
,
J.-W.
,
Subedi
,
R. C.
,
Shakfa
,
M. K.
,
Ren
,
Z.
,
Li
,
K.-H.
,
Lin
,
R.
,
Zhao
,
C.
,
Ng
,
T. K.
,
Ryou
,
J.-H.
,
Zhang
,
X.
,
Ooi
,
B. S.
, and
Li
,
X.
,
2018
, “
Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation
,”
ACS Photonics
,
5
(
8
), pp.
3305
3314
.10.1021/acsphotonics.8b00538
4.
Guo
,
W.
,
Sun
,
H.
,
Torre
,
B.
,
Li
,
J.
,
Sheikhi
,
M.
,
Jiang
,
J.
,
Li
,
H.
,
Guo
,
S.
,
Li
,
K.-H.
,
Lin
,
R.
,
Giugni
,
A.
,
Di Fabrizio
,
E.
,
Li
,
X.
, and
Ye
,
J.
,
2018
, “
Lateral‐Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence
,”
Adv. Funct. Mater.
,
28
(
32
), p.
1802395
.10.1002/adfm.201802395
5.
Sun
,
H.
,
Mitra
,
S.
,
Subedi
,
R. C.
,
Zhang
,
Y.
,
Guo
,
W.
,
Ye
,
J.
,
Shakfa
,
M. K.
,
Ng
,
T. K.
,
Ooi
,
B. S.
,
Roqan
,
I. S.
,
Zhang
,
Z.
,
Dai
,
J.
,
Chen
,
C.
, and
Long
,
S.
,
2019
, “
Unambiguously Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures Grown on Large Misoriented Sapphire Substrate
,”
Adv. Funct. Mater.
,
29
(
48
), p.
1905445
.10.1002/adfm.201905445
6.
Janjua
,
B.
,
Sun
,
H.
,
Zhao
,
C.
,
Anjum
,
D. H.
,
Priante
,
D.
,
Alhamoud
,
A. A.
,
Wu
,
F.
,
Li
,
X.
,
Albadri
,
A. M.
,
Alyamani
,
A. Y.
,
El-Desouki
,
M. M.
,
Ng
,
T. K.
, and
Ooi
,
B. S.
,
2017
, “
Droop-Free AlxGa1-xN/AlyGa1-yN Quantum-Disks-in-Nanowires Ultraviolet LED Emitting at 337 nm on Metal/Silicon Substrates
,”
Opt. Express
,
25
(
2
), p.
1381
.10.1364/OE.25.001381
7.
Cho
,
J.
,
Schubert
,
E. F.
, and
Kim
,
J. K.
,
2013
, “
Efficiency Droop in Light‐Emitting Diodes: Challenges and Countermeasures
,”
Laser Photonics Rev.
,
7
(
3
), pp.
408
421
.10.1002/lpor.201200025
8.
Weisbuch
,
C.
,
Piccardo
,
M.
,
Martinelli
,
L.
,
Iveland
,
J.
,
Peretti
,
J.
, and
Speck
,
J. S.
,
2015
, “
The Efficiency Challenge of Nitride Light‐Emitting Diodes for Lighting
,”
Phys. Status Solidi A
,
212
(
5
), pp.
899
913
.10.1002/pssa.201431868
9.
Fiorentini
,
V.
,
Bernardini
,
F.
,
Della Sala
,
F.
,
Carlo
,
A. D.
, and
Lugli
,
P.
,
1999
, “
Effects of Macroscopic Polarization in III-V Nitride Multiple Quantum Wells
,”
Phys. Rev. B
,
60
(
12
), pp.
8849
8858
.10.1103/PhysRevB.60.8849
10.
Sun
,
H.
, and
Moustakas
,
T. D.
,
2014
, “
UV Emitters Based on an AlGaN p–n Junction in the Form of Graded-Index Separate Confinement Heterostructure
,”
Appl. Phys. Express
,
7
(
1
), p.
012104
.10.7567/APEX.7.012104
11.
Sun
,
H.
,
Yin
,
J.
,
Pecora
,
E. F.
,
Dal Negro
,
L.
,
Paiella
,
R.
, and
Moustakas
,
T. D.
,
2017
, “
Deep-Ultraviolet Emitting AlGaN Multiple Quantum Well Graded-Index Separate-Confinement Heterostructures Grown by MBE on SiC Substrates
,”
IEEE Photonics J.
,
9
(
4
), pp.
1
9
.10.1109/JPHOT.2017.2716420
12.
Nam
,
K.
,
Nakarmi
,
M.
,
Li
,
J.
,
Lin
,
J.
, and
Jiang
,
H.
,
2003
, “
Mg Acceptor Level in AlN Probed by Deep Ultraviolet Photoluminescence
,”
Appl. Phys. Lett.
,
83
(
5
), pp.
878
880
.10.1063/1.1594833
13.
Li
,
L.
,
Zhang
,
Y.
,
Xu
,
S.
,
Bi
,
W.
,
Zhang
,
Z.-H.
, and
Kuo
,
H.-C.
,
2017
, “
On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes
,”
Materials
,
10
(
10
), p.
1221
.10.3390/ma10101221
14.
Nakarmi
,
M.
,
Nepal
,
N.
,
Lin
,
J.
, and
Jiang
,
H.
,
2009
, “
Photoluminescence Studies of Impurity Transitions in Mg-Doped AlGaN Alloys
,”
Appl. Phys. Lett.
,
94
(
9
), p.
091903
.10.1063/1.3094754
15.
Moustakas
,
T. D.
,
2016
, “
Ultraviolet Optoelectronic Devices Based on AlGaN Alloys Grown by Molecular Beam Epitaxy
,”
MRS Commun.
,
6
(
3
), pp.
247
269
.10.1557/mrc.2016.26
16.
Sun
,
P.
,
Bao
,
X.
,
Liu
,
S.
,
Ye
,
C.
,
Yuan
,
Z.
,
Wu
,
Y.
,
Li
,
S.
, and
Kang
,
J.
,
2015
, “
Advantages of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes With a Superlattice Electron Blocking Layer
,”
Superlattices Microstruct.
,
85
, pp.
59
66
.10.1016/j.spmi.2015.05.010
17.
Chu
,
C.
,
Tian
,
K.
,
Che
,
J.
,
Shao
,
H.
,
Kou
,
J.
,
Zhang
,
Y.
,
Li
,
Y.
,
Wang
,
M.
,
Zhu
,
Y.
, and
Zhang
,
Z.-H.
,
2019
, “
On the Origin of Enhanced Hole Injection for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes With AlN Insertion Layer in p-Electron Blocking Layer
,”
Opt. Express
,
27
(
12
), pp.
A620
A628
.10.1364/OE.27.00A620
18.
Ren
,
Z.
,
Lu
,
Y.
,
Yao
,
H.-H.
,
Sun
,
H.
,
Liao
,
C.-H.
,
Dai
,
J.
,
Chen
,
C.
,
Ryou
,
J.-H.
,
Yan
,
J.
,
Wang
,
J.
,
Li
,
J.
, and
Li
,
X.
,
2019
, “
III-Nitride Deep UV LED without Electron Blocking Layer
,”
IEEE Photonics J.
,
11
(
2
), pp.
1
11
.10.1109/JPHOT.2019.2902125
19.
APSYS, 2020, “Crosslight” APSYS, Crosslight Software, Inc., Burnaby, BC, Canada, accessed May 29, 2020,
http://www.crosslight.com
20.
Yun
,
J.
,
Shim
,
J.-I.
, and
Hirayama
,
H.
,
2015
, “
Analysis of Efficiency Droop in 280-nm AlGaN Multiple-Quantum-Well Light-Emitting Diodes Based on Carrier Rate Equation
,”
Appl. Phys. Express
,
8
(
2
), p.
022104
.10.7567/APEX.8.022104
21.
Hang
,
D.
,
Chen
,
C.
,
Chen
,
Y.
,
Jiang
,
H.
, and
Lin
,
J.
,
2001
, “
AlxGa1−xN/GaN Band Offsets Determined by Deep-Level Emission
,”
J. Appl. Phys.
,
90
(
4
), pp.
1887
1890
.10.1063/1.1383259
22.
Kuo
,
Y.-K.
,
Chang
,
J.-Y.
,
Chen
,
F.-M.
,
Shih
,
Y.-H.
, and
Chang
,
H.-T.
,
2016
, “
Numerical Investigation on the Carrier Transport Characteristics of AlGaN deep-UV Light-Emitting Diodes
,”
IEEE J. Quantum Electron.
,
52
(
4
), pp.
1
5
.
23.
Vurgaftman
,
I.
, and
Meyer
,
J. R.
,
2003
, “
Band Parameters for Nitrogen-Containing Semiconductors
,”
J. Appl. Phys.
,
94
(
6
), pp.
3675
3696
.10.1063/1.1600519
24.
Yu
,
H.
,
Ren
,
Z.
,
Zhang
,
H.
,
Dai
,
J.
,
Chen
,
C.
,
Long
,
S.
, and
Sun
,
H.
,
2019
, “
Advantages of AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes With an Al-Composition Graded Quantum Barrier
,”
Opt. Express
,
27
(
20
), pp.
A1544
A1553
.10.1364/OE.27.0A1544
You do not currently have access to this content.