Abstract

Thermal management of power electronics modules is one of the limiting factors in the peak power capability of the traction inverter system and overall efficiency of the e-drive. Liquid cooling using embedded microchannels with a three-dimensional (3D)-manifold cooler (EMMC) is a promising technology capable of removing heat fluxes of >1 kW/cm2 at tens of kPa pressure drop. In this work, we utilize computational fluid dynamics (CFD) simulations to conduct a parametric study of selected EMMC designs to improve the thermofluidic performance for a 5 mm × 5 mm heated area with the applied heat flux of 800 W/cm2 using single-phase water as working fluid at inlet temperature of 25 °C. We implemented strategies such as: (i) symmetric distribution of manifold inlet/outlet conduits, (ii) reducing the thickness of cold-plate (CP) substrate, and (iii) increasing fluid–solid interfacial area in CP microchannels, which resulted in a reduction in thermal resistance from 0.1 for baseline design to 0.04 cm2 K/W, while the pressure drop increased from 8 to 37 kPa.

References

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Cetegen
,
E.
,
2010
, “
Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surfaces
,”
Ph.D. dissertation
,
University of Maryland
, College Park, MD.https://drum.lib.umd.edu/handle/1903/10286
3.
Drummond
,
K. P.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
,
Back
,
D.
,
Janes
,
D. B.
,
Sinanis
,
M. D.
, and
Peroulis
,
D.
,
2016
, “
Evaporative Intrachip Hotspot Cooling With a Hierarchical Manifold Microchannel Heat Sink Array
,”
IEEE ITherm 2016 Conference
, Las Vegas, NV, May 31–June 3, pp.
307
315
.10.1109/ITHERM.2016.7517565
4.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Characterization of Hierarchical Manifold Microchannel Heat Sink Arrays Under Simultaneous Background and Hotspot Heating Conditions
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1289
1301
.10.1016/j.ijheatmasstransfer.2018.05.127
5.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2017
, “
Microchannel Cooling Strategies for High Heat Flux (1 kW/cm2) Power Electronic Applications
,”
IEEE ITherm 2017 Conference
, Orlando, FL, May 29–June 1, pp.
98
105
.10.1109/ITHERM.2017.7992457
6.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Embedded Cooling With 3D Manifold for Vehicle Power Electronics Applications: Single-Phase Thermal-Fluid Performance
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1108
1119
.10.1016/j.ijheatmasstransfer.2018.10.108
7.
Jung
,
K. W.
,
Cho
,
E.
,
Lee
,
H.
,
Kharangate
,
C.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 1: Experimental Study of Single-Phase Cooling Performance With R-245fa
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047846
8.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Ighalo
,
F.
,
2010
, “
Combined Numerical Optimization and Constructal Theory for the Design of Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
58
(
11
), pp.
882
899
.10.1080/10407782.2010.529036
9.
Scholl
,
S.
,
Gorle
,
C.
,
Houshmand
,
F.
,
Lee
,
H.
,
Liu
,
T.
,
Won
,
Y.
,
Kazemi
,
H.
,
Asheghi
,
M.
, and
Goodson
,
K.
,
2015
, “
Numerical Simulation of Advanced Monolithic Microcooler Designs for High Heat Flux Microelectronics
,”
ASME
Paper No. IPACK2015-48122.10.1115/IPACK2015-48122
10.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Optimization of a Microchannel Heat Sink With Temperature Dependent Fluid Properties
,”
Appl. Therm. Eng.
,
28
(
8–9
), pp.
1101
1107
.10.1016/j.applthermaleng.2007.12.001
11.
Andhare
,
R. S.
,
Shooshtari
,
A.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of a Flat Plate Manifold Microchannel Heat Exchanger in Counter Flow Configuration
,”
Appl. Therm. Eng.
,
96
, pp.
178
189
.10.1016/j.applthermaleng.2015.10.133
12.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Dessiatoun
,
S. V.
,
Al-Hajri
,
E.
, and
Ohadi
,
M. M.
,
2015
, “
Numerical Modeling and Thermal Optimization of a Single-Phase Flow Manifold-Microchannel Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
81
, pp.
478
489
.10.1016/j.ijheatmasstransfer.2014.10.022
13.
Sharma
,
C. S.
,
Tiwari
,
M. K.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2013
, “
Thermofluidics and Energetics of a Manifold Microchannel Heat Sink for Electronics With Recovered Hot Water as Working Fluid
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
135
151
.10.1016/j.ijheatmasstransfer.2012.11.012
14.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
15.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Toral
,
G.
,
Temiz
,
Y.
, and
Leblebici
,
Y.
,
2009
, “
Validation of the Porous-Medium Approach to Model Interlayer-Cooled 3D-Chip Stacks
,”
IEEE International Conference on 3D System Integration
, San Francisco, CA, Sept. 28–30, pp.
1
10
.10.1109/3DIC.2009.5306530
16.
Sarangi
,
S.
,
Bodla
,
K. K.
,
Garimella
,
S. V.
, and
Murthy
,
J. Y.
,
2014
, “
Manifold Microchannel Heat Sink Design Using Optimization Under Uncertainty
,”
Int. J. Heat Mass Transfer
,
69
, pp.
92
105
.10.1016/j.ijheatmasstransfer.2013.09.067
17.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.10.1115/1.4004089
18.
Jung
,
K. W.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Experimental Study of Single-Phase Cooling With DI Water in an Embedded Microchannels-3D Manifold Cooler
,” IEEE
21st Electronics Packaging Technology Conference
(
EPTC
), Singapore, Dec. 4–6, pp.
164
166
.10.1109/EPTC47984.2019.9026600
19.
Hazra
,
S.
,
Jung
,
K. W.
,
Iyengar
,
M.
,
Malone
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 3: Addressing Challenges in Laser Micro-Machining Based Manufacturing of 3D-Manifolded Micro-Cooler Devices
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047847
20.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
Wiley
,
New York
.
21.
Cengel
,
Y. A.
, and
Cimbala
,
J. H.
,
2013
,
Fluid Mechanics
, 3rd ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.