Abstract

In this paper, a concept of metal foam heat sink with pin fins (MFPF heat sink) is proposed to improve the cooling performance of high-powered electronics with nonuniform heat flux. Numerical simulations are carried out to investigate the thermohydraulic performance of MFPF heat sink, and the metal foam (MF) heat sink and traditional pin fin (PF) heat sink are employed for comparison. The capability of MFPF heat sink in handling nonuniform heat flux is examined under different power levels. It indicates that the MFPF heat sink greatly enhances the heat transfer performance, due to the common effects of the improved flow distribution and enhanced overall effective thermal conductivity (ETC). Results also show that the MFPF heat sink promotes the improvement of the bottom wall temperature uniformity. Porosity has more pronounced effects on heat transfer performance of MFPF heat sink than pore density. A nonuniform distribution heat flux (15–80–15 W/cm2) can be successfully dissipated using the proposed MFPF heat sink with the junction temperature below 95 °C at Re of 500.

References

1.
Gupta
,
A.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2019
, “
Enhanced Heat Transfer in Plate Fin Heat Sink With Dimples and Protrusions
,”
Heat Mass Transfer
,
55
(
8
), pp.
2247
2260
.10.1007/s00231-019-02561-w
2.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2019
, “
Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach
,”
ASME J. Electron. Packag.
,
141
(
2
), p.
021009
.10.1115/1.4043158
3.
Dixit
,
T.
, and
Ghosh
,
I.
,
2017
, “
Geometric Mean of Fin Efficiency and Effectiveness: A Parameter to Determine Optimum Length of Open-Cell Metal Foam Used as Extended Heat Transfer Surface
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072002
.10.1115/1.4036079
4.
Li
,
Y. T.
,
Gong
,
L.
,
Xu
,
M. H.
, and
Joshi
,
Y.
,
2020
, “
Enhancing the Performance of Aluminum Foam Heat Sinks Through Integrated Pin Fins
,”
Int. J. Heat Mass Transfer
,
151
p.
119376
.10.1016/j.ijheatmasstransfer.2020.119376
5.
Shen
,
Z. Y.
,
Jing
,
Q.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2017
, “
Thermal Performance of Miniscale Heat Sink With Jet Impingement and Dimple/Protrusion Structure
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052202
.10.1115/1.4036035
6.
Rasouli
,
E.
,
Naderi
,
C.
, and
Narayanan
,
V.
,
2018
, “
Pitch and Aspect Ratio Effects on Single-Phase Heat Transfer Through Microscale Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
118
, pp.
416
428
.10.1016/j.ijheatmasstransfer.2017.10.105
7.
Gong
,
L.
,
Li
,
Y. T.
,
Zhang
,
B.
, and
Xu
,
M. H.
,
2018
, “
Thermal Performance of Micro-Channel Heat Sink With Metallic Porous/Solid Compound Fin Design
,”
Appl. Therm. Eng.
,
137
, pp.
288
295
.10.1016/j.applthermaleng.2018.03.065
8.
Bai
,
X. H.
,
Kuwahara
,
F.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2018
, “
Forced Convective Heat Transfer in a Channel Filled With a Functionally Graded Metal Foam Matrix
,”
ASME J. Heat Transfer
,
140
(
11
), p.
111702
.10.1115/1.4040613
9.
Xu
,
F. Y.
, and
Wu
,
H. Y.
,
2018
, “
Experimental Study of Water Flow and Heat Transfer in Silicon Micro-Pin-Fin Heat Sinks
,”
ASME J. Heat Transfer
,
140
(
12
), p.
122401
.10.1115/1.4040956
10.
Rachedi
,
R.
, and
Chikh
,
S.
,
2001
, “
Enhancement of Electronic Cooling by Insertion of Foam Materials
,”
Heat Mass Transfer
,
37
(
4–5
), pp.
371
378
.10.1007/s002310100192
11.
Bayomy
,
A. M.
,
Saghir
,
M. Z.
, and
Yousefi
,
T.
,
2016
, “
Electronic Cooling Using Water Flow in Aluminum Metal Foam Heat Sink: Experimental and Numerical Approach
,”
Int. J. Therm. Sci.
,
109
, pp.
182
200
.10.1016/j.ijthermalsci.2016.06.007
12.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2009
, “
Sintered Porous Heat Sink for Cooling of High-Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2289
2299
.10.1016/j.ijheatmasstransfer.2008.11.016
13.
Wan
,
Z. M.
,
Guo
,
G. Q.
,
Su
,
K. L.
,
Tu
,
Z. K.
, and
Liu
,
W.
,
2012
, “
Experimental Analysis of Flow and Heat Transfer in a Miniature Porous Heat Sink for High Heat Flux Application
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4437
4441
.10.1016/j.ijheatmasstransfer.2012.04.013
14.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance of Porous Microchannel Heat Sink: Effects of Enlarging Channel Outlet
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
86
92
.10.1016/j.icheatmasstransfer.2013.08.001
15.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Different Configuration Designs
,”
Int. J. Heat Mass Transfer
,
66
, pp.
235
243
.10.1016/j.ijheatmasstransfer.2013.07.019
16.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.10.1016/j.mechmat.2003.02.001
17.
Li
,
Y. T.
,
Gong
,
L.
,
Xu
,
M. H.
, and
Joshi
,
Y.
,
2017
, “
Thermal Performance Analysis of Biporous Metal Foam Heat Sink
,”
ASME J. Heat Transfer
,
139
(
5
), p.
052005
.10.1115/1.4035999
18.
Jiang
,
P. X.
,
Li
,
M.
,
Lu
,
T. J.
,
Yu
,
L.
, and
Ren
,
Z. P.
,
2004
, “
Experimental Research on Convection Heat Transfer in Sintered Porous Plate Channels
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2085
2096
.10.1016/j.ijheatmasstransfer.2003.12.004
19.
Hadim
,
A.
,
1994
, “
Forced Convection in a Porous Channel With Localized Heat Sources
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
465
472
.10.1115/1.2911419
20.
Yang
,
J.
,
Zeng
,
M.
,
Wang
,
Q.
, and
Nakayama
,
A.
,
2010
, “
Forced Convection Heat Transfer Enhancement by Porous Pin Fins in Rectangular Channels
,”
ASME J. Heat Transfer
,
132
(
5
), p.
051702
.10.1115/1.4000708
21.
Sener
,
M.
,
Yataganbaba
,
A.
, and
Kurtbas
,
İ.
,
2016
, “
Forchheimer Forced Convection in a Rectangular Channel Partially Filled With Aluminum Foam
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
162
172
.10.1016/j.expthermflusci.2016.02.003
22.
Farsad
,
E.
,
Abbasi
,
S. P.
, and
Zabihi
,
M. S.
,
2014
, “
Fluid Flow and Heat Transfer in a Novel Microchannel Heat Sink Partially Filled With Metal Foam Medium
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021011
.10.1115/1.4025823
23.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2002
, “
Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
155
163
.10.1115/1.1464877
24.
DeGroot
,
C. T.
,
Straatman
,
A. G.
, and
Betchen
,
L. J.
,
2009
, “
Modeling Forced Convection in Finned Metal Foam Heat Sinks
,”
ASME J. Electron. Packag.
,
131
(
2
), p.
021001
.10.1115/1.3103934
25.
Seyf
,
H. R.
, and
Layeghi
,
M.
,
2010
, “
Numerical Analysis of Convective Heat Transfer From an Elliptic Pin Fin Heat Sink With and Without Metal Foam Insert
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071401
.10.1115/1.4000951
26.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.10.1016/j.ijheatmasstransfer.2014.05.053
27.
Jeng
,
T. M.
,
Tzeng
,
S. C.
, and
Tang
,
F. Z.
,
2010
, “
Fluid Flow and Heat Transfer Characteristics of the Porous Metallic Heat Sink With a Conductive Cylinder Partially Filled in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4216
4227
.10.1016/j.ijheatmasstransfer.2010.05.044
28.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.10.1016/j.ijheatmasstransfer.2005.12.012
29.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.10.1016/S0017-9310(00)00123-X
30.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Metal Foams
,”
Ph.D. thesis
,
University of Colorado
, Boulder, CO.http://abcm.org.br/anais/encit/2000/arquivos/palestras/mahajan.pdf
31.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
You do not currently have access to this content.